首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work has established that the grpE+ gene product is a heat shock protein that is essential for bacteriophage lambda growth at all temperatures and for Escherichia coli growth at temperatures above 43 degrees C. Here it is shown that the grpE+ gene product is essential for bacterial viability at all temperatures. The strategy required constructing a grpE deletion derivative carrying a selectable chloramphenicol drug resistance marker provided by an omega insertion and showing that this deletion construct can be crossed into the bacterial chromosome if and only if a functional grpE+ gene is present elsewhere in the same cell. As a control, the same omega insertion could be placed immediately downstream of the grpE+ coding sequence without any observable effects on host growth. This result demonstrates that the inability to construct a grpE-deleted E. coli strain is not simply due to a lethal polar effect on neighboring gene expression. Unexpectedly, it was found that the grpE deletion derivative could be crossed into the bacterial chromosome in a strain that was defective in DnaK function. Further analysis showed that it was not the lack of DnaK function per se that allowed E. coli to tolerate a deletion in the grpE+ gene. Rather, it was the presence of unknown extragenic suppressors of a dnaK mutation that somehow compensated for the deficiency in both DnaK and GrpE function.  相似文献   

2.
Previous studies have demonstrated that the Escherichia coli dnaK and grpE genes code for heat shock proteins. Both the Dnak and GrpE proteins are necessary for bacteriophage lambda DNA replication and for E. coli growth at all temperatures. Through a series of genetic and biochemical experiments, we have shown that these heat shock proteins functionally interact both in vivo and in vitro. The genetic evidence is based on the isolation of mutations in the dnaK gene, such as dnaK9 and dnaK90, which suppress the Tr- phenotype of bacteria carrying the grpE280 mutation. Coimmunoprecipitation of DnaK+ and GrpE+ proteins from cell lysates with anti-DnaK antibodies demonstrated their interaction in vitro. In addition, the DnaK756 and GrpE280 mutant proteins did not coimmunoprecipitate efficiently with the GrpE+ and DnaK+ proteins, respectively, suggesting that interaction between the DnaK and GrpE proteins is necessary for E. coli growth, at least at temperatures above 43 degrees C. Using this assay, we found that one of the dnaK suppressor mutations, dnaK9, reinstated a protein-protein interaction between the suppressor DnaK9 and GrpE280 proteins.  相似文献   

3.
We report the isolation and characterization of a previously unidentified Escherichia coli gene that suppresses the temperature-sensitive growth and filamentation of a dnaK deletion mutant strain. Introduction of a multicopy plasmid carrying this wild-type gene into a dnaK deletion mutant strain rescued the temperature-sensitive growth of the dnaK deletion mutant strain at 40.5 degrees C and the filamentation, fully at 37 degrees C and partially at 40.5 degrees C. However, the inability of dnaK mutant cells to support bacteriophage lambda growth was not suppressed. This gene was also able to suppress the temperature-sensitive growth of a grpE280 mutant strain at 41 degrees C. Filamentation of the grpE280 mutant strain was suppressed at 37 degrees C but not at 41 degrees C. The dnaK suppressor gene, designated dksA, maps near the mrcB gene (3.7 min on the E. coli chromosome). DNA sequence analysis and in vivo experiments showed that dksA encodes a 17,500-Mr polypeptide. Gene disruption experiments indicated that dksA is not an essential gene.  相似文献   

4.
A gene has been cloned from a DNA library from alkaliphilic Bacillus firmus OF4 that functionally complements a mutant strain of Escherichia coli, NM81, that carries a deletion for one of that strain's Na+/H+ antiporter genes (delta nhaA). The cloned alkaliphile gene restored to NM81 the ability to grow at pH 7.5 in the presence of 0.6 M NaCl and on 100 mM Li+ in the presence of melibiose, and concomitantly led to an increase in the membrane associated Na+/H+ antiport activity. The biologically active alkaliphile DNA was identified as an incomplete open reading frame, the sequence of which would encode a hydrophobic protein. The insert was used to isolate clones containing the complete open reading frame, which would be predicted to encode a protein with a molecular weight of 42,960 and multiple membrane spanning regions. When the open reading frame was expressed under the control of the T7 promoter, the gene product was localized in the membrane. Southern analysis indicated no homology between the alkaliphile gene, which we propose to call nhaC, and the nhaA gene of Escherichia coli, nor with other genes in digests of DNA from E. coli, Bacillus subtilis, or Bacillus alcalophilus. Although there was also no significant similarity between the deduced protein products of the alkaliphile gene and the nhaA gene of E. coli, there was a small region of significant similarity between the deduced alkaliphile gene product and the protein encoded by a human Na+/H+ antiporter gene (Sardet, C., Franchi, A., and Pouyssegur, J. (1989) Cell 56, 271-280).  相似文献   

5.
A clone that complements mutations in Yersinia enterocolitica lipopolysaccharide (LPS) core biosynthesis was isolated, and the DNA sequence of the clone was determined. Three complete open reading frames and one partial open reading frame were located on the cloned DNA fragment. The first, partial, open reading frame had homology to the rfbK gene. The remaining reading frames had homology to galE, rol, and gsk. Analysis of the galE homolog indicates that although it can complement an Escherichia coli galE mutant, its primary function in Y. enterocolitica is not in the production of UDP galactose but, instead, some other nucleotide sugar required for LPS biosynthesis. This gene has been renamed lse, for LPS sugar epimerase. The rol homolog has been demonstrated to have a role in Y. enterocolitica serotype 0:8 O-polysaccharide antigen chain length determination. An additional galE homolog has been identified in Y. enterocolitica by homology to the E. coli gene. The product of this gene has UDP galactose 4-epimerase activity in both E. coli and Y. enterocolitica. This gene is linked to the other genes of the galactose utilization pathway, similar to what is seen in other members of the family Enterobacteriaceae. Although Y. enterocolitica 0:8 strains are reported to have galactose as a constituent of LPS, a strain containing a mutation in this galE gene does not exhibit any LPS defects.  相似文献   

6.
We have identified the grpE gene product as the B25.3 heat shock protein of Escherichia coli on the following evidence: (i) a protein similar in size and isoelectric point to B25.3 was induced after infection of UV-irradiated bacteria by lambda grpE+ transducing phage, (ii) mutant phage lambda grpE40, isolated by its inability to propagate on grpE280 bacteria, failed to induce the synthesis of the B25.3 protein, and (iii) lambda grpE+ revertants, derived from phage grpE40 as able to propagate on grpE280 bacteria, simultaneously recovered the ability to induce synthesis of the B25.3 protein. In addition, we show that E. coli bacteria carrying the grpE280 mutation are temperature sensitive for bacterial growth at 43.5 degrees C. Through transductional analysis and temperature reversion experiments, it was demonstrated that the grpE280 mutation is responsible for both the inability of lambda to replicate at any temperature tested and the lack of colony formation at high temperature. At the nonpermissive temperature the rates of synthesis of DNA and RNA were reduced in grpE280 bacteria.  相似文献   

7.
In the course of a study of genes located at min 44 of the Escherichia coli genome, we identified an open reading frame with the capacity to encode a 43-kDa polypeptide whose predicted amino acid sequence is strikingly similar to those of the well-known DD-carboxipeptidases penicillin-binding proteins PBP5 and PBP6. The gene product was shown to bind [3H]benzylpenicillin and to have DD-carboxypeptidase activity on pentapeptide muropeptides in vivo. Therefore, we called the protein PBP6b and the gene dacD. As with other E. coli DD-carboxypeptidases, PBP6b is not essential for cell growth. A quadruple dacA dacB dacC dacD mutant was constructed and shown to grow as well as its isogenic wild-type strain, indicating that the loss of any known PBP-associated DD-carboxypeptidase activity is not deleterious for E. coli. We also identified the homologous gene of dacD in Salmonella typhimurium as one of the components of the previously described phsBCDEF gene cluster.  相似文献   

8.
The DnaK chaperone system, consisting of DnaK, DnaJ, and GrpE, remodels and refolds proteins during both normal growth and stress conditions. CbpA, one of several DnaJ analogs in Escherichia coli, is known to function as a multicopy suppressor for dnaJ mutations and to bind nonspecifically to DNA and preferentially to curved DNA. We found that CbpA functions as a DnaJ-like co-chaperone in vitro. CbpA acted in an ATP-dependent reaction with DnaK and GrpE to remodel inactive dimers of plasmid P1 RepA into monomers active in P1 DNA binding. Additionally, CbpA participated with DnaK in an ATP-dependent reaction to prevent aggregation of denatured rhodanese. The cbpA gene is in an operon with an open reading frame, yccD, which encodes a protein that has some homology to DafA of Thermus thermophilus. DafA is a protein required for the assembly of ring-like particles that contain trimers each of T. thermophilus DnaK, DnaJ, and DafA. The E. coli YccD was isolated because of its potential functional relationship to CbpA. Purified YccD specifically inhibited both the co-chaperone activity and the DNA binding activity of CbpA, suggesting that YccD modulates the activity of CbpA. We named the product of the yccD gene CbpM for "CbpA modulator."  相似文献   

9.
10.
P T Lee  A Y Hsu  H T Ha    C F Clarke 《Journal of bacteriology》1997,179(5):1748-1754
Strains of Escherichia coli with mutations in the ubiE gene are not able to catalyze the carbon methylation reaction in the biosynthesis of ubiquinone (coenzyme Q) and menaquinone (vitamin K2), essential isoprenoid quinone components of the respiratory electron transport chain. This gene has been mapped to 86 min on the chromosome, a region where the nucleic acid sequence has recently been determined. To identify the ubiE gene, we evaluated the amino acid sequences encoded by open reading frames located in this region for the presence of sequence motifs common to a wide variety of S-adenosyl-L-methionine-dependent methyltransferases. One open reading frame in this region (o251) was found to encode these motifs, and several lines of evidence that confirm the identity of the o251 product as UbiE are presented. The transformation of a strain harboring the ubiE401 mutation with o251 on an expression plasmid restored both the growth of this strain on succinate and its ability to synthesize both ubiquinone and menaquinone. Disruption of o251 in a wild-type parental strain produced a mutant with defects in growth on succinate and in both ubiquinone and menaquinone synthesis. DNA sequence analysis of the ubiE401 allele identified a missense mutation resulting in the amino acid substitution of Asp for Gly142. E. coli strains containing either the disruption or the point mutation in ubiE accumulated 2-octaprenyl-6-methoxy-1,4-benzoquinone and demethylmenaquinone as predominant intermediates. A search of the gene databases identified ubiE homologs in Saccharomyces cerevisiae, Caenorhabditis elegans, Leishmania donovani, Lactococcus lactis, and Bacillus subtilis. In B. subtilis the ubiE homolog is likely to be required for menaquinone biosynthesis and is located within the gerC gene cluster, known to be involved in spore germination and normal vegetative growth. The data presented identify the E. coli UbiE polypeptide and provide evidence that it is required for the C methylation reactions in both ubiquinone and menaquinone biosynthesis.  相似文献   

11.
B Wu  A Wawrzynow  M Zylicz    C Georgopoulos 《The EMBO journal》1996,15(18):4806-4816
We have isolated various missense mutations in the essential grpE gene of Escherichia coli based on the inability to propagate bacteriophage lambda. To better understand the biochemical mechanisms of GrpE action in various biological processes, six mutant proteins were overexpressed and purified. All of them, GrpE103, GrpE66, GrpE2/280, GrpE17, GrpE13a and GrpE25, have single amino acid substitutions located in highly conserved regions throughout the GrpE sequence. The biochemical defects of each mutant GrpE protein were identified by examining their abilities to: (i) support in vitro lambda DNA replication; (ii) stimulate the weak ATPase activity of DnaK; (iii) dimerize and oligomerize, as judged by glutaraldehyde crosslinking and HPLC size chromatography; (iv) interact with wild-type DnaK protein using either an ELISA assay, glutaraldehyde crosslinking or HPLC size chromatography. Our results suggest that GrpE can exist in a dimeric or oligomeric form, depending on its relative concentration, and that it dimerizes/oligomerizes through its N-terminal region, most likely through a computer predicted coiled-coil region. Analysis of several mutant GrpE proteins indicates that an oligomer of GrpE is the most active form that interacts stably with DnaK and that the interaction is vital for GrpE biological function. Our results also demonstrate that both the N-terminal and C-terminal regions are important for GrpE function in lambda DNA replication and its co-chaperone activity with DnaK.  相似文献   

12.
An open reading frame upstream from nifHDK operon of Klebsiella pneumoniae had been described. The orientation of this open reading frame is opposite to that of nifHDK and sequence homology was found between the open reading frame promoter and the promoter of nifHDK operon. A recombinant plasmid carrying the promoter region of the open reading frame fused to the beta-galactosidase gene was constructed. Strains of E.coli were transformed with the plasmid containing this open reading frame promoter-lacZ fusion or co-transformed with it and a plasmid carrying the nifA gene. An appreciable activity of beta-galactosidase was found in strains which received both plasmids, indicating that the promoter of the open reading frame can be activated by the product of nifA gene. Thus, the open reading frame found between nifHDK operon and nifJ behaves just like other nif genes of K.pneumoniae in requiring the product of nifA as the positive effector for expression.  相似文献   

13.
GTP cyclohydrolase II catalyzes the first committed step in the biosynthesis of riboflavin. The gene coding for this enzyme in Escherichia coli has been cloned by marker rescue. Sequencing indicated an open reading frame of 588 bp coding for a 21.8-kDa peptide of 196 amino acids. The gene was mapped to a position at 28.2 min on the E. coli chromosome and is identical with ribA. GTP cyclohydrolase II was overexpressed in a recombinant strain carrying a plasmid with the cloned gene. The enzyme was purified to homogeneity from the recombinant strain. The N-terminal sequence determined by Edman degradation was identical to the predicted sequence. The sequence is homologous to the 3' part of the central open reading frame in the riboflavin operon of Bacillus subtilis.  相似文献   

14.
The function of UreC, the product of a 1,335-bp-long open reading frame upstream from the urease structural genes (ureAB) of Helicobacter pylori, was investigated. We present data showing that the ureC gene product is a phosphoglucosamine mutase. D. Mengin-Lecreulx and J. van Heijenoort (J. Biol. Chem. 271:32-39, 1996) observed that UreC is similar (43% identity) to the GlmM protein of Escherichia coli. Those authors showed that GlmM is a phosphoglucosamine mutase catalyzing interconversion of glucosamine-6-phosphate into glucosamine-1-phosphate, which is subsequently transformed into UDP-N-acetylglucosamine. The latter product is one of the main cytoplasmic precursors of cell wall peptidoglycan and outer membrane lipopolysaccharides. The present paper reports that, like its E. coli homolog glmM, the H. pylori ureC gene is essential for cell growth. It was known that growth of a lethal conditional glmM mutant of E. coli at a nonpermissive temperature can be restored in the presence of the ureC gene. We showed that complete complementation of the glmM mutant can be obtained with a plasmid overproducing UreC. The peptidoglycan content and the specific phosphoglucosamine mutase activity of such a complemented strain were measured; these results demonstrated that the ureC gene product functions as a phosphoglucosamine mutase. Homologs of the UreC and GlmM proteins were identified in Haemophilus influenzae, Mycobacterium leprae, Clostridium perfringens, Synechocystis sp. strain PCC6803, and Methanococcus jannaschii. Significant conservation of the amino acid sequence of these proteins in such diverse organisms suggests a very ancient common ancestor for the genes and defines a consensus motif for the phosphoglucosamine mutase active site. We propose renaming the H. pylori ureC gene the glmM gene.  相似文献   

15.
A new osmotically inducible gene in Escherichia coli, osmY, was induced 8- to 10-fold by hyperosmotic stress and 2- to 3-fold by growth in complex medium. The osmY gene product is a periplasmic protein which migrates with an apparent molecular mass of 22 kDa on sodium dodecyl sulfate-polyacrylamide gels. A genetic fusion to osmY was mapped to 99.3 min on the E. coli chromosome. The gene was cloned and sequenced, and an open reading frame was identified. The open reading frame encoded a precursor protein with a calculated molecular weight of 21,090 and a mature protein of 18,150 following signal peptide cleavage. Sequencing of the periplasmic OsmY protein confirmed the open reading frame and defined the signal peptide cleavage site as Ala-Glu. A mutation caused by the osmY::TnphoA genetic fusion resulted in slightly increased sensitivity to hyperosmotic stress.  相似文献   

16.
17.
We have cloned DNA fragments from Bacillus subtilis 168S into Escherichia coli, which produced a lytic zone on an agar medium containing B. subtilis cell wall. Sequencing of the fragments showed the presence of an open reading frame (ORF) which encodes a polypeptide of 272 amino acids with a molecular mass of 29919 Da. The deduced amino acid sequence showed considerable homology with that of the cell wall hydrolase gene of Bacillus sp. (Potvin, C., Leclerc, D., Tremblay, G., Asselin, A. & Bellemare, G. (1988). Molecular and General Genetics 214, 241-248). Accordingly, the gene was designated cwlA, for cell wall lysis. The N-terminal amino acid sequence of cwlA gene product prepared from a E. coli clone was AIKVVKNLVSKSKYGLKCPN, which is consistent with that of the deduced sequence starting from Ala at second position from the initiation codon of the cwlA gene. A presumed sigma A promoter and a rho-independent terminator were found upstream and downstream of the ORF, respectively. A chloramphenicol-resistance determinant integrated into the ORF was mapped by PBS1 transduction, which indicated the gene sequence dnaE-aroD-cwlA.  相似文献   

18.
N Tojo  S Inouye    T Komano 《Journal of bacteriology》1993,175(8):2271-2277
The lon gene of Escherichia coli is known to encode protease La, an ATP-dependent protease associated with cellular protein degradation. A lon gene homolog from Myxococcus xanthus, a soil bacterium which differentiates to form fruiting bodies upon nutrient starvation, was cloned and characterized by use of the lon gene of E. coli as a probe. The nucleotide sequence of the M. xanthus lon gene was determined. It contains an open reading frame that encodes a 92-kDa protein consisting of 817 amino acid residues. The deduced amino acid sequence of the M. xanthus lon gene product showed 60 and 56% identity with those of the E. coli and Bacillus brevis lon gene products, respectively. Analysis of an M. xanthus strain carrying a lon-lacZ operon fusion suggested that the lon gene is similarly expressed during vegetative growth and development in M. xanthus. In contrast to that of E. coli, the M. xanthus lon gene was shown to be essential for cell growth, since a null mutant could not be isolated.  相似文献   

19.
20.
Escherichia coli is capable of synthesizing the apo-glucose dehydrogenase enzyme (GDH) but not the cofactor pyrroloquinoline quinone (PQQ), which is essential for formation of the holoenzyme. Therefore, in the absence of exogenous PQQ, E. coli does not produce gluconic acid. Evidence is presented to show that the expression of an Erwinia herbicola gene in E. coli HB101(pMCG898) resulted in the production of gluconic acid, which, in turn, implied PQQ biosynthesis. Transposon mutagenesis showed that the essential gene or locus was within a 1.8-kb region of a 4.5-kb insert of the plasmid pMCG898. This 1.8-kb region contained only one apparent open reading frame. In this paper, we present the nucleotide sequence of this open reading frame, a 1,134-bp DNA fragment coding for a protein with an M(r) of 42,160. The deduced sequence of this protein had a high degree of homology with that of gene III (M(r), 43,600) of a PQQ synthase gene complex from Acinetobacter calcoaceticus previously identified by Goosen et al. (J. Bacteriol. 171:447-455, 1989). In minicell analysis, pMCG898 encoded a protein with an M(r) of 41,000. These data indicate that E. coli HB101(pMCG898) produced the GDH-PQQ holoenzyme, which, in turn, catalyzed the oxidation of glucose to gluconic acid in the periplasmic space. As a result of the gluconic acid production, E. coli HB101(pMCG898) showed an enhanced mineral phosphate-solubilizing phenotype due to acid dissolution of the hydroxyapatite substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号