首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies showed that the cardiac response of the baroreceptor reflex (bradycardia) is inhibited during the defense reaction evoked by direct electrical or chemical stimulation of the periaqueductal gray (dPAG) in the rat. Whether central serotonin and nucleus tractus solitarius (NTS) serotonin(3) (5-HT(3)) receptors might participate in this inhibition was investigated in urethane-anesthetized and atenolol-pretreated rats. Our results showed that both electrical and chemical stimulation of the dPAG produced a drastic reduction of the cardiovagal component of the baroreceptor reflex triggered by either intravenous administration of phenylephrine or aortic nerve stimulation. This inhibitory effect of dPAG stimulation on the baroreflex bradycardia was not observed in rats that had been pretreated with p-chlorophenylalanine (300 mg/kg ip daily for 3 days) to inhibit serotonin synthesis. Subsequent 5-hydroxytryptophan administration (60 mg/kg ip), which was used to restore serotonin synthesis, allowed the inhibitory effect of dPAG stimulation on both aortic and phenylephrine-induced cardiac reflex responses to be recovered in p-chlorophenylalanine-pretreated rats. On the other hand, in nonpretreated rats, the inhibitory effect of dPAG stimulation on the cardiac baroreflex response could be markedly reduced by prior intra-NTS microinjection of granisetron, a 5-HT(3) receptor antagonist, or bicuculline, a GABA(A) receptor antagonist. These results show that serotonin plays a key role in the dPAG stimulation-induced inhibition of the cardiovagal baroreceptor reflex response. Moreover, they support the idea that 5-HT(3) and GABA(A) receptors in the NTS contribute downstream to the inhibition of the baroreflex response caused by dPAG stimulation.  相似文献   

2.
The effect of corticosterone administered in different doses has been studied on hypothalamic serotonin (5-HT) content. A single intraperitoneal injection of the hormone in doses of 1.0 and 2.0 mg/kg bw. increased the serotonin content of the hypothalamus at 30 min after administration. Five mg/kg had no effect, while 10.0 mg/kg decreased the serotonin content. The data provide an explanation for the controversial findings of different authors having used different doses of different glucocorticoids and on the basis of the results it is emphasized that the action of glucocorticoids on hypothalamic 5-HT content is a dose-dependent dual effect.  相似文献   

3.
We have shown previously that acute (1 to 6 h) and prolonged (1 to 5 days) exposure of rainbow trout to naphthalene resulted in decreased plasmatic cortisol and 17-beta-estradiol levels. In order to elucidate the mechanisms through which naphthalene might disrupt endocrine regulation, the present study investigated whether brain monoaminergic neurotransmitters are altered by the action of this polycyclic aromatic hydrocarbon. In a first experiment, immature rainbow trout were injected with vegetable oil alone or containing naphthalene (10 and 50 mg/kg, i.p.), and sacrificed 1, 3 and 6 h after treatment. In a second experiment, slow-coconut oil implants alone or containing naphthalene (doses of 10 and 50 mg/kg) were i.p. located and fish sacrificed 1, 3 and 5 days after treatment. Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA) and noradrenaline (NA) were measured in several brain regions by HPLC. The results show that short-term naphthalene increases DA and 5-HT contents in hypothalamus and telencephalon, but differentially alter contents of the acid metabolites. Implants with naphthalene reduced DA content in hypothalamus and preoptic region but increased in telencephalon. 5-HT metabolism was decreased in hypothalamus, preoptic region, pituitary and brain stem after 3 to 6 days of treatment. In addition, the levels of NA were increased in hypothalamus and telencephalon after acute treatment and in hypothalamus and preoptic area after several days of exposure to naphthalene. These data suggest that brain neurotransmitter systems are sensitive to polycyclic aromatic hydrocarbons and could represent a target of the naphthalene-induced neuroendocrine disruption.  相似文献   

4.
To investigate the role of serotonin (5-HT) receptor 1A or 7 in regulating lordosis behavior in female rats, ovariectomized rats were treated with 3 kinds of receptor agonists and lordosis behavior was observed. The injected agents were the selective 5-HT1A receptor agonist, buspirone (BUS), the highly selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin ((+/-)8-OH-DPAT), and the 5-HT1A and 5-HT7 receptor agonist, (R)-8-hydroxy-2-(di-n-propylamino)tetralin ((+)8-OH-DPAT). A behavioral test was performed after ovariectomy and subcutaneous implantation of a silicon tube containing estradiol. Female rats in which the lordosis quotient (LQ) was over 70 were intraperitoneally injected with several doses of these agents. As a result, in the BUS group, the dose of 3 mg/kg bw, but not 1 mg/kg was effective for suppressing lordosis. On the other hand, an inhibitory effect was observed from 0.25 mg/kg and 0.5 mg/kg in the (+)8-OH-DPAT and (+/-)8-OH-DPAT groups, respectively. In the time-course experiment, in all drug-treated groups, LQ decreased to lower than 20 after 15 min and low LQ continued for 1 hr at least. Measurement of locomotor activity using an infrared sensor system showed no relation between the decrease in lordosis by these agents and spontaneous locomotion. These results indicate that 5-HT1A is strongly involved in the lordosis-inhibiting circuit of the serotonin neurons.  相似文献   

5.
The effects of feeding of 6-propylthiouracil (6-PTU) and polyunsaturated fatty acids (PUFA) independently and in combination and administration (ip) of a single dose of triiodothyronine (T3) (2.5 microg/100 g body wt) along with feeding of 6-PTU and PUFA were studied in rat brain. Dopamine (DA), 5-hydroxytryptophan (5-HTP), serotonin (5-HT), 5-hydroxy indole acetic acid (5-HIAA), norepinephrine (NE) and epinephrine (EPI) contents were assayed in the hypothalamus and cerebral cortex regions. It was found that 6-PTU feeding resulted in decrease in dopamine, 5-HT, 5-HTP and 5-HIAA in both regions. In animals fed with PUFA followed by administration of T3, the DA level was found normal.  相似文献   

6.
Dextromethorphan, a noncompetitive blocker of the N-methyl-D-aspartate (NMDA) type of glutamate receptor, at 45, 60 and 75 mg/kg, ip doses induced a behavioural syndrome characterised by reciprocal forepaw treading, lateral head-weaving, hind-limb abduction and flat body posture. Such type of behavioural syndrome is induced by 8-hydroxy-2- (di-n-propylamino) tetralin (8-OH-DPAT) by directly stimulating the central postsynaptic 5-hydroxytryptamine (5-HT, serotonin) receptors of the 5-HT1A type. Pretreatment with buspirone (5, 10 mg/kg, ip) and l-propranolol (10, 20 mg/kg, ip) antagonised the behavioural syndrome induced by 8-OH-DPAT and dextromethorphan. Pretreatment with p-chlorophenylalanine (100 mg/kg/day x 4 days) antagonised the behavioural syndrome induced by dextromethorphan and dexfenfluramine but had no significant effect on 8-OH-DPAT induced behavioural syndrome. This indicates that dextromethorphan induces the behavioural syndrome by releasing 5-HT from serotonergic neurons with resultant activation of the postsynaptic 5-HT1A receptors by the released 5-HT. Pretreatment with fluoxetine (10 mg/kg, ip) significantly potentiated the behavioural syndrome induced by dextromethorphan and 5-hydroxytryptophan but significantly antagonised dexfenfluramine induced behavioural syndrome. This indicates that dextromethorphan releases 5-HT by a mechanism which differs from that of dexfenfluramine. Dextromethorphan may be releasing 5-HT by blocking the NMDA receptors and thereby counteracting the inhibitory influence of l-glutamate on 5-HT release.  相似文献   

7.
The molecule serotonin (5-hydroxytryptamine or 5-HT) is involved in numerous biological processes both inside and outside of the central nervous system. 5-HT signals through 5-HT receptors and it is the diversity of these receptors and their subtypes that give rise to the varied physiological responses. It is clear that platelet derived serotonin is critical for normal wound healing in multiple organs including, liver, lung heart and skin. 5-HT stimulates both vasoconstriction and vasodilation, influences inflammatory responses and promotes formation of a temporary scar which acts as a scaffold for normal tissue to be restored. However, in situations of chronic injury or damage 5-HT signaling can have deleterious effects and promote aberrant wound healing resulting in tissue fibrosis and impaired organ regeneration. This review highlights the diverse actions of serotonin signaling in the pathogenesis of fibrotic disease and explores how modulating the activity of specific 5-HT receptors, in particular the 5-HT2 subclass could have the potential to limit fibrosis and restore tissue regeneration. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.  相似文献   

8.
Depression of lung endothelial cell metabolic function may be an early and sensitive indicator of lung damage. When such functions are measured in vivo, substrates injected usually must be limited to "trace" doses due to the significant hemodynamic effects of high doses of substrate. Under first-order conditions (i.e., trace doses) the enzyme or transport system rate constant Vmax/Km may be calculated, but independent estimates of each variable (Vmax and Km) are not available. We therefore used multiple indicator-dilution methods and higher substrate concentrations to apply a mathematical model, based on saturable kinetics that yield independent estimates of the apparent kinetic parameters Vmax and Km for pulmonary angiotensin-converting enzyme (ACE). We used the ACE substrate, [3H]benzoyl-phenylalanyl-alanyl-proline ([3H]BPAP) and made these measurements and also estimates of serotonin [5-hydroxytryptamine (5-HT)] removal, before and after acute lung injury induced by intratracheal administration of phorbol myristate acetate (PMA). PMA significantly depressed the percent 5-HT removal (62 +/- 3 to 44 +/- 4%) and BPAP percent metabolism (74 +/- 2 to 66 +/- 2), when trace amounts of either compound were injected as a bolus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The neurochemical, serotonin (5-hydroxytryptamine; 5-HT) is involved in the regulation of toadfish pulsatile urea excretion as well as the teleost hypoxia response. Thus, the goal of this study was to determine whether environmental conditions that activate branchial chemoreceptors also trigger pulsatile urea excretion in toadfish, since environmental dissolved oxygen levels in a typical toadfish habitat show significant diel fluctuations, often reaching hypoxic conditions at dawn. Toadfish were fitted with arterial, venous and/or buccal catheters and were exposed to various environmental conditions, and/or injected with the O(2) chemoreceptor agonist NaCN or the 5-HT(2) receptor agonist alpha-methyl-5HT. Arterial PO(2), as well as ammonia and urea excretion were monitored. Natural fluctuations in arterial PO(2) levels in toadfish did not correlate with the occurrence of a urea pulse. Chronic exposure (24 h) of toadfish to hyperoxia was without effect on nitrogen excretion, however, exposure to hypoxia caused a significant reduction in the frequency of urea pulses, and exposure to hypercapnia resulted in a reduction in the percentage of nitrogen waste excreted as urea. Of toadfish exposed acutely to hypoxia, 20% pulsed within 1 h, whereas none pulsed after normoxic or hypercapnic treatments. Furthermore, 20% of fish injected intravenously with NaCN pulsed within 1 h of injection, but no fish pulsed after injection of NaCN into the buccal cavity. To test whether environmental conditions affected 5-HT(2) receptors, toadfish were injected with alpha-methyl-5HT, which elicits urea pulses in toadfish. No significant differences in pulse size occurred among the various environmental treatments. Our findings suggest that neither the environmental conditions of hypoxia, hyperoxia or hypercapnia, nor direct branchial chemoreceptor activation by NaCN play a major role in the regulation of pulsatile urea excretion in toadfish.  相似文献   

10.
The present work studies the existence of monoamine oxidase (MAO) activity in serotonergic endings present in rat major cerebral arteries. Enzymatic activity was appraised in vivo by serotonin (5-HT) accumulation or 5-hydroxyindole acetic acid (5-HIAA) disappearance with time after systemic administration of MAO inhibitors. Pargyline (75 mg/Kg, ip) brought about significant 5-HT increase and 5-HIAA decrease in major cerebral arteries 30 and 60 min after its administration. Clorgyline (75 mg/Kg, ip) also induced 5-HT enhancement and 5-HIAA decline in these arteries 30 and 60 min after its injection. However, treatment with deprenyl (75 mg/Kg, ip) only evoked a significant 5-HT increase at 60 min. When either clorgyline (5 mg/Kg, ip) or deprenyl (5 mg/Kg, ip) were administered 5-HT and 5-HIAA levels remained unaffected. Two weeks after performing electrolytical lesion of dorsal raphe nucleus and 60 min after clorgyline (75 mg/Kg, ip) injection 5-HT and 5-HIAA levels appeared significantly reduced in cerebral arteries and striatum when compared to sham-lesioned controls. These results suggest that MAO-A isoform acting on endogenous 5-HT is present in rat major cerebral arteries and is located in nerve endings of fibers arising from dorsal raphe nucleus.  相似文献   

11.
In addition to its role as neurotransmitter, serotonin (5-HT) is an important modulator of inflammation and immunity. Here, we report novel findings suggesting a 5-HT involvement in T cell migration. In particular, we show that 5-HT tunes the responsiveness of human T lymphocytes to the broadly expressed chemokine CXCL12 in transwell migration assays. By real-time PCR, western blot analysis and electrophysiological patch clamp experiments, we demonstrate that the type 3 5-HT receptor (5-HT(3)) is functionally expressed in human primary T cells. In addition, specific 5-HT(3) receptor agonists selectively decrease T cell migration towards gradients of CXCL12 but not of inflammatory chemokines, such as CCL2 and CCL5. In transmigration experiments, 5-HT(3) receptor stimulation reverts the inhibitory effect of endothelial-bound CXCL12 on T cell migration. Our data suggest that the reduced T cell responsiveness to CXCL12 induced by 5-HT may occur to facilitate T cell extravasation and migration into inflamed tissues.  相似文献   

12.
The serotonin (5-hydroxytryptamine, 5-HT) content of tissue compartments in the medicinal leech, Hirudo medicinalis, was measured by means of high-pressure liquid chromatography coupled with electrochemical detection (HPLC-EC). Each segmental ganglion contains 21.3 +/- 2.9 (9) pmol 5-HT [X +/- SEM (N)]. The pharynx contains 7.1 +/- 1.1 (9) pmol 5-HT/mg wet weight; the salivary glands 3.2 +/- 0.9 (10), ventral body wall 2.0 +/- 0.2 (11), and vasofibrous tissue 1.2 +/- 0.2 (11). The blood of hungry leeches contains 8.7 +/- 1.9 (7) nM 5-HT while that of well-fed leeches is 2.2 +/- 0.4 (6) nM. Leeches were injected with the cytotoxic analog of serotonin, 5,7-dihydroxytryptamine (5,7-DHT) producing selective lesions of the peripherally projecting serotonin-containing neurons, and which in turn abolished their feeding behavior. The serotonin content of the pharynx and ganglia of these toxin-treated leeches were lowered significantly. The serotonin levels within the body wall and salivary glands were not altered significantly by the toxin treatment, but the levels within the vasofibrous tissue and blood were elevated substantially.  相似文献   

13.
Summary

The possibility that biogenic amines affect ovarian development in the red swamp crayfish, Procambarus clarkii, was investigated. Females were administered 15 μg/g body weight (bw) of norepinephrine, dopamine, 5-hydroxytryptamine (5-HT) or octopamine on days 1, 5 and 10 and were sacrificed on day 15. Crayfish given 5-HT showed significant increases in ovarian index (30.5%) and oocyte size (34.0%) over the concurrent controls, while norepinephrine, dopamine and octopamine did not significantly affect either the ovarian index or oocyte size. Significantly more labeling by 14C-leucine of ovarian proteins was found in ovaries of crayfish that were injected with 5-HT in vivo, but when ovarian lobes from crayfish that had not been injected with 5-HT were incubated in vitro with 5-HT added to the incubation medium, no significant change in the level of incorporation of 14C-leucine into ovarian proteins occurred.

The 5-HT receptor blocker LY53857 (25 μg/g bw) retarded ovarian development. The 5-HT releaser fenfluramine and the 5-HT potentiator fluoxetine (both 15 μg/g bw) were also used. Crayfish given fenfluramine, fluoxetine, fenfluramine plus 5-HT or fluoxetine plus 5-HT showed significant increases of ovarian index (24.0–102.8%), oocyte size (20.0–87.4%) and in vitro 14C-leucine labeling of ovarian proteins (30.6–123.6%) over the concurrent controls. The ovaries of crayfish that received the 5-hydroxytryptaminergic neurotoxin 5,6-dihydroxytryptamme (10 μg/g bw) did not show any significant change as compared with the initial control. These findings are consistent with the hypothesis that 5-HT, which is present in the central nervous system of Procambarus clarkii, exerts its stimulatory effect on the ovary of this crayfish indirectly by triggering release of the ovary-stimulating hormone.  相似文献   

14.
It has been proposed that the desensitization of 5-HT1A (5-hydroxytryptamine; serotonin) receptors following chronic therapy with selective serotonin reuptake inhibitors (SSRIs) is necessary for their therapeutic efficacy. Stimulation of the 5-HT1A receptors decreases serotonin (5-HT) synthesis and release, but it is not clear if the receptors are fully desensitized following chronic SSRI treatment. The main objective of this study was evaluation of ability of 5-HT1A receptors to modulate 5-HT synthesis after 14-day paroxetine treatment. 5-HT1A receptor sensitivity following chronic administration of the SSRI paroxetine was assessed by the ability of an acute challenge with the 5-HT1A agonist, flesinoxan, to modulate 5-HT synthesis in the rat brain. The rates of 5-HT synthesis were measured using the α-[14C]methyl-l-tryptophan autoradiographic method. The rats were treated for 2 weeks with paroxetine (10 mg/(kg day), s.c., delivered by osmotic minipump). After this treatment, the rats received an acute challenge with flesinoxan (5 mg/kg, i.p.), while the control rats were injected with the vehicle. Forty minutes following the flesinoxan injection, the tracer, α-[14C]methyl-l-tryptophan, was injected over 2 min. 5-HT synthesis rates were calculated from autoradiographically measured tissue tracer concentrations and plasma time–activity curves. The results demonstrated that the acute flesinoxan challenge produced a significant decrease in 5-HT synthesis rates throughout the rat brain. The greatest decrease was observed in the ventral hippocampus, somatosensory cortex and the ascending serotonergic cell bodies. In comparison with data reported on an acute challenge with flesinoxan in naïve rats (rats without any other treatment), the results presented here suggest a greater effect of flesinoxan on synthesis reduction in rats chronically treated with paroxetine. The results also suggest that the 5-HT receptors were not fully desensitized by paroxetine treatment, and that the stimulation of 5-HT1A receptors with an agonist is still capable of reducing 5-HT synthesis.  相似文献   

15.
It has been proposed that the desensitization of 5-HT1A (5-hydroxytryptamine; serotonin) receptors following chronic therapy with selective serotonin reuptake inhibitors (SSRIs) is necessary for their therapeutic efficacy. Stimulation of the 5-HT1A receptors decreases serotonin (5-HT) synthesis and release, but it is not clear if the receptors are fully desensitized following chronic SSRI treatment. The main objective of this study was evaluation of ability of 5-HT1A receptors to modulate 5-HT synthesis after 14-day paroxetine treatment. 5-HT1A receptor sensitivity following chronic administration of the SSRI paroxetine was assessed by the ability of an acute challenge with the 5-HT1A agonist, flesinoxan, to modulate 5-HT synthesis in the rat brain. The rates of 5-HT synthesis were measured using the α-[14C]methyl-l-tryptophan autoradiographic method. The rats were treated for 2 weeks with paroxetine (10 mg/(kg day), s.c., delivered by osmotic minipump). After this treatment, the rats received an acute challenge with flesinoxan (5 mg/kg, i.p.), while the control rats were injected with the vehicle. Forty minutes following the flesinoxan injection, the tracer, α-[14C]methyl-l-tryptophan, was injected over 2 min. 5-HT synthesis rates were calculated from autoradiographically measured tissue tracer concentrations and plasma time–activity curves. The results demonstrated that the acute flesinoxan challenge produced a significant decrease in 5-HT synthesis rates throughout the rat brain. The greatest decrease was observed in the ventral hippocampus, somatosensory cortex and the ascending serotonergic cell bodies. In comparison with data reported on an acute challenge with flesinoxan in naïve rats (rats without any other treatment), the results presented here suggest a greater effect of flesinoxan on synthesis reduction in rats chronically treated with paroxetine. The results also suggest that the 5-HT receptors were not fully desensitized by paroxetine treatment, and that the stimulation of 5-HT1A receptors with an agonist is still capable of reducing 5-HT synthesis.  相似文献   

16.
Yuan Q  Lin F  Zheng X  Sehgal A 《Neuron》2005,47(1):115-127
Entrainment of the Drosophila circadian clock to light involves the light-induced degradation of the clock protein timeless (TIM). We show here that this entrainment mechanism is inhibited by serotonin, acting through the Drosophila serotonin receptor 1B (d5-HT1B). d5-HT1B is expressed in clock neurons, and alterations of its levels affect molecular and behavioral responses of the clock to light. Effects of d5-HT1B are synergistic with a mutation in the circadian photoreceptor cryptochrome (CRY) and are mediated by SHAGGY (SGG), Drosophila glycogen synthase kinase 3beta (GSK3beta), which phosphorylates TIM. Levels of serotonin are decreased in flies maintained in extended constant darkness, suggesting that modulation of the clock by serotonin may vary under different environmental conditions. These data identify a molecular connection between serotonin signaling and the central clock component TIM and suggest a homeostatic mechanism for the regulation of circadian photosensitivity in Drosophila.  相似文献   

17.
Elicitation of delayed-type hypersensitivity (DTH) responses by DTH effector T cells requires a prior phase of DTH initiation. This consists of an immediate hypersensitivity-like response mediated by Ag-specific DTH-initiating factors that are analogous to IgE antibodies in that they sensitize tissue mast cells for release of the vasoactive amine serotonin (5-HT). Experiments were conducted to determine whether IgE mAb injected i.v., or 5-HT injected locally, could initiate DTH. It was found that small doses of IgE (1 microgram/mouse), or of 5-HT (50 to 500 ng locally), which mediated small immediate responses, were optimal for DTH initiation. Even lower doses of IgE (10 ng/mouse), or of 5-HT (5 ng locally), which did not mediate macroscopically measurable immediate responses, were capable of DTH initiation. Higher doses of IgE (10 to 100 micrograms/mouse), which mediated large immediate responses, were not able to initiate DTH. A similar dose response for DTH initiation was found with IgG1 mAb, which is another mast cell-sensitizing isotype of Ig. The inability of high doses of IgE or IgG1 to mediate DTH initiation was probably caused by local release of large inhibitory amounts of histamine, because systemic treatment with the histamine-2 receptor antagonist cimetidine allowed high doses of IgE to initiate DTH. Thus, IgE and IgG1 antibodies could initiate DTH via release of small amounts of 5-HT, but simultaneous release of large amounts of histamine were inhibitory, probably via an effect on histamine-2 receptors of recruited T cells. We concluded the following: 1) IgE or IgG1 antibodies can initiate DTH; 2) DTH initiation need not be associated with macroscopically detectable early responses; 3) mast cell release of 5-HT acts positively whereas release of histamine acts negatively in murine DTH; 4) Ag-specific factors are not the only mechanism of DTH initiation.  相似文献   

18.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

19.
The response of hypothalamus-pituitary-adrenal system to insulin administration was studied in the male Wistar rats submitted to a strong and prolonged blockade of serotonin brain synthesis by repetitive injections of p-chlorophenylalanine (PCPA) a 5-hydroxytryptophan inhibitor. After 24, 48, 72 or 96 hours of either one or two doses of PCPA (250 mg/kg, i.p.) were administered with insulin (0.25 UI/kg s.c.), the plasmatic glucose and corticosterone levels being estimated at 0, 30 and 60 minutes. When PCPA was injected twice, the lapse between them was 48 hours. Insulin produced decrease of plasmatic corticosterone values and inhibition of the response to insulin, specially between 48 and 72 hours, for a single management of PCPA, and stronger and more prolonged for the double dose. The fall of serotonin content in brain maintained great correlation with effects referred above. The results support that stimulatory action of insulin on the pituitary-adrenal system is mediated by central serotoninergic neurons and reaffirms the hypothesis that serotonin (5HT) positively modulates the activity of hypothalamus-pituitary-adrenal system.  相似文献   

20.
Angiotensin (AII) and serotonin (5-HT) are both vasoconstrictors of the constant-flow perfused rat hind limb that have opposite effects on thermogenesis, possibly the result of differing effects on vascular flow distribution between nutritive and non-nutritive pathways. In the present study interaction between the two opposing agents was examined with the expectation that the combined presence would show additive effects on pressure and mutually neutralizing effects on thermogenesis. Thus doses of AII and 5-HT that gave similar, but opposite, quantitative effects on thermogenesis were infused alone, in combination one after the other, or in combination with the order reversed, and the effects on perfusion pressure (PP) and thermogenesis (oxygen uptake, VO2) were compared. AII (3 nM) alone increased PP by 15+/-1 mmHg (1 mmHg = 133.3 Pa) and VO2 by 3.1-/+0.2 micromol.h(-1).g(-1), whereas 5-HT (1 microM) alone increased PP by 75+/-6 mmHg and inhibited VO2 by 3.9+/-0.2 micromol.h(-1).g(-1). When added in combination, the outcome depended on the order of addition. Following AII, infusion of 5-HT further increased PP by 160+/-11 mmHg and decreased VO2 by 6.3+/-0.2 micromol.h(-1)g(-1). Following 5-HT, infusion of AII further increased PP by 28+/-4 mmHg and increased VO2 by only 1.8+/-0.3 micromol.h(-1).g(-1). The prior presence of 5-HT (1 microM) shifted the AII dose-response curves for VO2 and pressure to the right and left, respectively. The prior infusion of AII increased the dose-dependent response to 5-HT in terms of both the inhibition of VO2 and the increase in PP. At low doses of 5-HT (10(-8)-10(-7) M), but not alpha-methyl serotonin (alphaMT), there was a marked vasodilatation-associated inhibition of AII-mediated increase in VO2. Overall the data show that the combined effect of AII and 5-HT differed from the simple addition of each separately. Since the order of addition appears to be critical in terms of thermogenic outcome, it is concluded that each vasoconstrictor exerts a specific hemodynamic action to affect access of the other to vascular receptor sites. These findings are consistent with the previously reported effects of these vasoconstrictors on substrate and insulin access to muscle of the perfused rat hind limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号