首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Previous results demonstrated that the adenosine that accumulates in human fat cell suspensions is derived from extracellular sources (Kather, H. (1988) J. Biol. Chem. 263, 8803-8809). To get insight into the mechanisms responsible for the lack of adenosine release, extracellular adenine nucleotide catabolism was minimized by 10 mmol/liter beta-glycerophosphate and 10 mumol/liter alpha,beta-methyleneadenosine 5'-diphosphate. Intracellular adenine nucleotide catabolism resulted in a release of inosine and hypoxanthine under these conditions that was increased markedly by isoproterenol. Experiments with inhibitors of adenosine deaminase and adenosine kinase indicated that the production of inosine and hypoxanthine proceeded via AMP deamination. Consistently, IMP levels were increased transiently in the presence of isoproterenol. In addition, the cells possessed a nucleotide phosphomonoesterase that was resistant to the inhibitory actions of ATP and alpha,beta-methyleneadenosine 5'-diphosphate and showed preference for IMP over AMP. Adenosine (approximately 1 nmol/10(6) cells/h) was also produced inside the cells. However, adenosine production was unrelated to ATP turnover via adenylate cyclase, and any adenosine formed was immediately reconverted to adenine nucleotides in the absence and presence of isoproterenol. It was concluded that adenosine is not released by intact human adipocytes, because the alternative routes of intracellular AMP catabolism are compartmentalized (at least in functional terms), and adenosine kinase is not saturated with substrate in the absence and presence of isoproterenol.  相似文献   

2.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

3.
Recent evidence suggests that adenosine 3′,5′-monophosphate (cyclic AMP) may play a role in lymphocyte responses. The nature of this role is yet unclear since it has been reported that increases in intracellular cyclic AMP can both inhibit and enhance immune functions. In an attempt to determine how lymphocyte cyclic AMP metabolism is regulated we have measured cyclic nucleotide phosphodiesterase in populations of murine T and B lymphocytes. Results indicate that the enzyme activity in B cells was over fourfold higher than that found in thymocytes. Further analyses by preparative polyacrylamide gel electrophoresis revealed that these cell populations contained different multiple forms of the enzyme.  相似文献   

4.
Adenosine plays an important role in physiology of several organs. Its turnover inside and outside of the cell is controlled by several enzymes and transport processes. The action of extracellular adenosine is mediated via at least four receptors named A(1), A(2A), A(2B), and A(3). Recent studies have reported that adenosine is a significant mediator of regulatory lymphocyte function. Numerous data indicates that adenosine affects T lymphocyte activation, proliferation and lymphocyte-mediated cytolysis. Impaired lymphocyte functioning and enhanced susceptibility to infections is a common feature of human diabetes. This review collects data bringing us closer to understanding the disturbances in lymphocytes adenosine homeostasis in diabetes. Adenosine receptors and nucleoside transporters are targets for potential drugs in many pathophysiological situations. Therefore, action of adenosine on lymphocyte function in diabetes may be important target for modulation of immune responses and understanding of mechanisms leading to several pathologies of immune cells observed in diabetes.  相似文献   

5.
Extracellular adenosine is elevated in cancer tissue, and it negatively regulates local immune responses. Adenosine production from extracellular ATP has attracted attention as a mechanism of regulatory T cell-mediated immune regulation. In this study, we examined whether small vesicles secreted by cancer cells, called exosomes, contribute to extracellular adenosine production and hence modulate immune effector cells indirectly. We found exosomes from diverse cancer cell types exhibit potent ATP- and 5'AMP-phosphohydrolytic activity, partly attributed to exosomally expressed CD39 and CD73, respectively. Comparable levels of activity were seen with exosomes from pleural effusions of mesothelioma patients. In such fluids, exosomes accounted for 20% of the total ATP-hydrolytic activity. Exosomes can perform both hydrolytic steps sequentially to form adenosine from ATP. This exosome-generated adenosine can trigger a cAMP response in adenosine A(2A) receptor-positive but not A(2A) receptor-negative cells. Similarly, significantly elevated cAMP was also triggered in Jurkat cells by adding exosomes with ATP but not by adding exosomes or ATP alone. A proportion of healthy donor T cells constitutively express CD39 and/or CD73. Activation of T cells by CD3/CD28 cross-linking could be inhibited by exogenously added 5'AMP in a CD73-dependent manner. However, 5'AMP converted to adenosine by exosomes inhibits T cell activation independently of T cell CD73 expression. This T cell inhibition was mediated through the adenosine A(2A) receptor. In summary, the data highlight exosome enzymic activity in the production of extracellular adenosine, and this may play a contributory role in negative modulation of T cells in the tumor environment.  相似文献   

6.
Some peculiarities of adenosine and adenine nucleotide metabolism in rat thymocytes were investigated. It was shown that the uptake of labelled adenosine or adenine by thymocytes is markedly inhibited by papaverine due to the decrease of the adenylate kinase activity, on the one hand, and to the acceleration of ATP catabolism and inosine and hypoxanthine release into the environment, on the other. ATP catabolism occurs in a special compartment which in [14C] adenosine and [14C] adenine prelabelled thymocytes has a higher specific radioactivity as compared with the whole cell. In [14C] adenine-prelabelled thymocytes and extracellular medium, papaverine does not influence the content but increases the specific radioactivity of adenosine.  相似文献   

7.
The influence of adenosine on the ribonucleotide metabolism in quiescent BALB/c 3T3 cells was studied. The cellular adenine ribonucleotides were labelled by pretreating the cells with [2-3H]-adenine. After addition of adenosine to the cell cultures, the amount and radioactivity of the cellular purine ribonucleotides and the radioactivity of the purine compounds in the medium were determined. It appeared that adenosine gave rise both to rapid catabolism of adenine ribonucleotides with inosine 5'-monophosphate (IMP) as an intermediate and to expansion of the cellular adenosine 5'-triphosphate (ATP) pool. The maximal rates and the apparent activation constants for the two processes have been determined. Experiments with varying concentrations of coformycin (an inhibitor of adenosine 5'-monophosphate [AMP] deaminase and adenosine deaminase) and of 5'-amino-5'-deoxyadenosine (an inhibitor of adenosine kinase), respectively, showed that each compound may almost completely inhibit the adenosine-induced catabolism. This effect can be obtained under conditions where there was little or no effect by the two inhibitors on the rate of expansion of the cellular ATP pool. These results may best be explained by assuming that the process of expansion of the ATP pool is independent of the induced catabolism of adenine ribonucleotides, even though both processes seem to depend on the phosphorylation of adenosine to AMP. The total increase in the pool size of ATP and of guanosine 5'-triphosphate (GTP), both caused by adenosine, seems not to have regulatory effect on adenine ribonucleotide catabolism.  相似文献   

8.
Endothelial degradation of extracellular nucleotides is known to be an important mechanism in regulation of thrombosis, inflammation and immune response. It is possible that this pathway is a target for pleiotropic drugs such as atorvastatin. We studied therefore the effect of atorvastatin on extracellular nucleotide degradation in human endothelial cells. Atorvastatin treatment of human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC-1) resulted in significant increase in ATP breakdown and adenosine formation both if analysed in intact cell studies and as enzyme activity in cell lysates. We conclude that one of the beneficial effects of atorvastatin may include acceleration of extracellular nucleotide breakdown. This will attenuate nucleotide mediated pro-inflammatory effect and stimulate protective mechanisms of adenosine.  相似文献   

9.
Endothelial degradation of extracellular nucleotides is known to be an important mechanism in regulation of thrombosis, inflammation and immune response. It is possible that this pathway is a target for pleiotropic drugs such as atorvastatin. We studied therefore the effect of atorvastatin on extracellular nucleotide degradation in human endothelial cells. Atorvastatin treatment of human umbilical vein endothelial cells (HUVEC) and human microvascular endothelial cells (HMEC-1) resulted in significant increase in ATP breakdown and adenosine formation both if analysed in intact cell studies and as enzyme activity in cell lysates. We conclude that one of the beneficial effects of atorvastatin may include acceleration of extracellular nucleotide breakdown. This will attenuate nucleotide mediated pro-inflammatory effect and stimulate protective mechanisms of adenosine.  相似文献   

10.
Extracellular purines are important signaling molecules that mediate both inflammatory (ATP, ADP) and anti-inflammatory (adenosine) effects in the vasculature. The duration and magnitude of purinergic signaling is governed by a network of purine-converting ectoenzymes, and endothelial and lymphoid cells are generally characterized by counteracting ATP-inactivating and ATP-regenerating/adenosine-eliminating, phenotypes, respectively. By using cultured human umbilical vein endothelial cells and normal or leukemic lymphocytes as an in vitro model of leukocyte-endothelial interactions, we have identified a link between the adhesion cascade and extracellular purine turnover. Upon adhesion, lymphocytes suppress endothelial purine metabolism via (i) inhibition of ecto-5'-nucleotidase/CD73-mediated AMP hydrolysis, (ii) rapid deamination of the remaining adenosine, and (iii) maintenance of the sustained pericellular ATP level through continuous nucleotide release and phosphotransfer reactions. Compensation of the loss of adenosine promotes vascular barrier function (measured as a paracellular flux of 70 kDa fluorescein isothiocyanate-dextran) and decreases transendothelial leukocyte migration. Together, these data show that adherent lymphocytes attempt to prevent adenosine formation in the endothelial environment that, as a consequence, may impair the vascular barrier function and facilitate the subsequent step of leukocyte transmigration into the tissue. These leukocyte adhesion-mediated shifts in the local nucleotide and nucleoside concentrations represent a previously unrecognized paracrine mechanism affecting the functional state of the targeted vascular endothelium and coordinately regulating lymphocyte trafficking between the blood and tissues.  相似文献   

11.
To study early stages of human lymphocyte differentiation, bone marrow cells were physically separated according to their density and size by gradient centrifugation and then velocity sedimentation. The isolated cell fractions were incubated with putative inducing agents and then assayed for their expression of an array of surface differentiation markers. The inducing agents used were two polypeptides, thymopoietin (Tp) and ubiquitin (Ub), and the cyclic nucleotide, dibutyril cyclic 3'5' adenosine monophosphate (cAMP). Tp, Ub, and cAMP each induced the ability to form sheep erythrocyte rosettes by small lymphocytes, which may thus represent T cell precursors. Ub and Tp induced rosette formation with mouse erythrocytes on lymphocytes of more heterogenous size, which may be "early" B cell precursors. Ub alone could induce surface IgM expression on small lymphocytes, which might be "late" B cell precursors. Both Tp and Ub induced Fc receptors on small lymphocytes. Complement receptors could not be induced on marrow lymphocytes by Tp, Ub, or cAMP. A number of lymphocyte precursors can thus be identified by their physical characteristics and their ability to respond to particular soluble factors with the expression of new differentiation markers.  相似文献   

12.
We have studied the apparent kinetic parameters of the ecto-nucleotide triphosphatase from CLL B lymphocytes and compared them to blood and tonsillar B and T cells. The Vmax of the ecto-ATPase activity in CLL B lymphocytes, was 65 +/- 10 fmol Pi/cell per 30 min compared to 37 +/- 2.1 in blood B lymphocytes, and 8.5 +/- 1.7 in blood T lymphocytes. The ATPase of membranes prepared from CLL, tonsillar B and T, and blood T lymphocytes had a relationship among the cell types similar to that seen in intact cells. However, no difference in the km for ATP, .17 mM, or the km for magnesium, .15 mM was found in the ecto-ATPase of CLL lymphocytes as compared to blood or tonsillar B cells. The ectoenzyme of CLL cells hydrolyzed GTP, ITP, CTP, and UTP as well as ATP. Further, ATP added to an enzyme assay containing an alternative nucleotide did not result in increased phosphate release. Nucleotide acceptance of blood B and T lymphocytes was very similar to that of CLL B cells. ATP inhibited phosphate release when present in excess of magnesium in both CLL and blood B lymphocytes. These data indicate that there is greater ectonucleotide triphosphatase activity in tonsillar and blood B lymphocytes, including CLL, as compared either to blood or tonsillar T lymphocytes. However, CLL cells showed no qualitative difference from blood or tonsillar B cells in ectonucleotidase activity. Thus, the higher activity in CLL cells is "B cell-like" and might reflect, also, their maturation stage or monoclonal origin.  相似文献   

13.
NK cell proliferation is suppressed in some patients with cancer by unknown mechanisms. Because purine metabolites released into the extracellular space during cell lysis may affect cell function, we hypothesized that these metabolites could serve as feedback regulators of NK cell proliferation. Sorted NK (CD56+/CD3-) cells were incubated with IL-2 (1000 U/ml) in a 4-day thymidine uptake assay with or without 10-10,000 microM of nucleotides. Adenine nucleotides inhibited NK cell proliferation, with ATP = ADP > 5'-adenylylimidodiphosphate > AMP = adenosine; ADP-ribose and nicotinamide adenine dinucleotide, but not nicotinamide or UTP, caused a dose-dependent suppression of thymidine uptake. A total of 100 microM ATP, a concentration that induced a maximal (80%) inhibition of thymidine uptake, did not inhibit cytotoxic activity against K562 targets. Because NK cells retained the ability to lyse K562 targets 4 days after exposure to 500 microM ATP or 1000 microM adenosine, inhibition of thymidine uptake was not due to cell death. Incubation of NK cells with dibutyryl cAMP and forskolin also suppressed thymidine uptake. Cholera toxin and pertussis toxin suppressed NK cell proliferation. Pertussis toxin did not block the adenine nucleotide effects. Further, ATP, but not adenosine or other nucleotides, markedly increased intracellular cAMP in a dose-dependent manner. The ATP-induced increase in cAMP was specific to cytolytic cells, because CD19+ B cells and CD4+ T cells did not increase their intracellular cAMP. These studies demonstrate that NK proliferation is regulated through purine receptors by adenine nucleotides, which may play a role in decreased NK cell activity. The response to adenine nucleotides is lineage-specific.  相似文献   

14.
Ecto-5′-nucleotidase (eNT/CD73, E.C.3.1.3.5) is a glycosyl phosphatidylinositol (GPI)-linked cell-surface protein with several functions, including the local generation of adenosine from AMP, with the consequent activation of adenosine receptors and the salvaging of extracellular nucleotides. It also apparently functions independently of this activity, e.g., in the mediation of cell-cell adhesion. Liver fibrosis can be considered as a dynamic and integrated cellular response to chronic liver injury and the activation of hepatic stellate cells (HSCs) plays a role in the fibrogenic process. eNT/CD73 and adenosine are reported to play an important role in hepatic fibrosis in murine models. Knockdown of eNT/CD73 leads to an increase in mRNA expression of tissue non-specific alkaline phosphatase (TNALP), another AMP-degrading enzyme and thus no alteration is seen in the total ecto-AMPase activity of the cell. eNT/CD73 knockdown also leads to changes in the expression of collagen I and a clear alteration of cell migration. We suggest that eNT/CD73 protein expression controls cell migration and collagen expression in a mechanism independent of changes in nucleotide metabolism.  相似文献   

15.
16.
17.
The distribution of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) activities in lymphoid organs and lymphocyte subpopulations in mice, and the effect of phytohemagglutinin P (PHA-P) and concanavalin A (Con A) on the enzyme activities were studied. ADA activity was distributed equally in cells from all organs used and no mouse strain differences were observed. In contrast, PNP activity varied with the mouse strain, being highest in C57BL/6 mice and lowest in BALB/c mice, and with the organ in ICR mice, being high in peripheral blood lymphocytes and spleen lymphocytes, low in mesenteric lymph node cells and absent or very weak in thymus cells. T and B lymphocytes were prepared from spleen of ICR mice. High ADA activity was found in both T and B lymphocytes, whereas PNP activity in the T lymphocytes was about one-third of that in the B lymphocytes. PNP activity in thymus cells was increased to the normal level of T lymphocytes in the spleens by cultivation without stimulant. The development of PNP activity in thymus cells was partially inhibited by Con A but was not affected by PHA-P. ADA activity in thymus cells was enhanced by in vitro stimulation with PHA-P but not with Con A. In contrast, in spleen lymphocytes the development of ADA activity was enhanced by stimulation with PHA-P and Con A, and that of PNP activity was enhanced by PHA-P but not by Con A.  相似文献   

18.
Exogenous ATP enhances calcium influx in intact thymocytes   总被引:3,自引:0,他引:3  
Recent observations have indicated that exogenous adenosine triphosphate (ATP) may influence lymphocyte functions such as proliferation and cytoxicity. Here we report a novel activity of extracellular ATP--it specifically increases Ca2+ uptake in murine lymphocytes. ATP added to thymocytes increases the rate of [45Ca2+] uptake by up to 20-fold. The increased rate is seen with ATP concentrations as low as 500 microM and is half-maximal at approximately 2 mM ATP. The magnitude of stimulation by ATP is dependent on Mg2+ concentration, and ATP-Mg2+ complex is probably the true activator. Of the high-energy phosphate-containing compounds tested, including deoxy-ATP, only GTP showed a modest stimulation of calcium uptake. ADP, AMP, cyclic AMP, and adenosine did not significantly increase calcium uptake. Cellular integrity as indicated by trypan blue exclusion and ethidium bromide/acridine orange staining was unaffected by ATP. Ca2+ influx is the major mode of action of ATP in raising intrathymocyte Ca2+ levels, because neither the Ca2+ efflux nor the [45Ca2+]-Ca2+ exchange was significantly altered in the presence of ATP. Verapamil, a Ca2+ channel blocking agent, could not prevent the ATP effect, suggesting that ATP may be acting by a mechanism other than the voltage-dependent Ca2+ channel. An analysis of intracellular and extracellular ATP levels by chemiluminescence assay indicated no significant ATP entry into intact lymphocytes. Also, ATP added to the medium containing thymocytes was destroyed (approximately 50% by 20 min). The nonhydrolyzable ATP analogs, AMPPCP and AMPPNP, were unable to stimulate a significant amount of Ca2+ uptake, suggesting the involvement of a cell surface phosphotransferase activity. This was supported by the demonstration of a threefold to fivefold increase in the labeling of protein and phospholipid fractions obtained from intact thymocytes exposed to [gamma 32P]ATP for 30 min. Ca2+ is believed to play an important role in a variety of lymphocyte functions, including mitogenesis and natural killer cell activity. The data herein thus provide a potential mechanism for the action of exogenous ATP on these lymphocyte functions.  相似文献   

19.
We compared the properties of the ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5'-nucleotidase, EC 3.1.3.5) in intact pig aortic smooth-muscle cells in culture with the properties that we previously investigated for ectonucleotidases of aortic endothelial cells [Cusack, Pearson & Gordon (1983) Biochem. J. 214, 975-981]. In experiments with nucleotide phosphorothioate diastereoisomers, stereoselective catabolism of adenosine 5'-[beta-thio]triphosphate, but not of adenosine 5'-[alpha-thio]triphosphate, by the triphosphatase and stereoselective catabolism of adenosine 5'-[alpha-thio]diphosphate by the diphosphatase were found, as occurs in endothelial cells. In contrast with endothelial ecto-5'-nucleotidase, the smooth-muscle-cell enzyme catabolized adenosine 5'-monophosphorothioate (AMPS) to adenosine: the affinity of the enzyme for AMPS was greater than for AMP, and Vmax for AMPS was about one-sixth that for AMP. In both cell types AMPS was an apparently competitive inhibitor of AMP catabolism by 5'-nucleotidase. The relative rates of catabolism of nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety were similar to those in endothelial cells. No ectopyrophosphatase activity was detected in smooth-muscle cells, in contrast with endothelial cells, where modest activity is present.  相似文献   

20.
The amount of adenosine triphosphate (ATP) in human lymphocytes was determined using a technique based on light emission from a bioluminescent reaction with luciferin-luciferase. The amount of ATP changed when cells were incubated in the presence of specific HLA antisera and complement. For determination of intracellular ATP a modified method was applied, which was based on reduction of extracellular ATP by the addition of ATPase. The results of titration of an anti-human lymphocyte serum using the bioluminescence assay were in agreement with the results of fluorescence vitality staining. Bioluminescent HLA-determination in 57 cell samples each tested with 5 different antisera also gave good agreement (95.8%) with the conventional method. From these experimental data the calculated ATP content per lymphocyte was 0.135 ± 0.058 pg ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号