首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic stress can affect skin function, and some skin diseases might be triggered or aggravated by stress. Stress can activate the central hypothalamic–pituitary–adrenocortical (HPA) axis, which causes glucocorticoid levels to increase. The skin has HPA axis elements that react to environmental stressors to regulate skin functions, such as melanogenesis. This study explores the mechanism whereby chronic stress affects skin pigmentation, focusing on the HPA axis, and investigates the role of glucocorticoids in this pathway. We exposed C57BL/6 male mice to two types of chronic stress, chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS). Mice subjected to either stress condition showed reduced melanogenesis. Interestingly, CRS and CUMS triggered reductions in the mRNA expression levels of key factors involved in the HPA axis in the skin. In mice administered corticosterone, decreased melanin synthesis and reduced expression of HPA axis elements were observed. The reduced expression of HPA axis elements and melanogenesis in the skin of stressed mice were reversed by RU486 (a glucocorticoid receptor antagonist) treatment. Glucocorticoids had no significant inhibitory effect on melanogenesis in vitro. These results suggest that, high levels of serum corticosterone induced by chronic stress can reduce the expression of elements of the skin HPA axis by glucocorticoid-dependent negative feedback. These activities can eventually result in decreased skin pigmentation. Our findings raise the possibility that chronic stress could be a risk factor for depigmentation by disrupting the cutaneous HPA axis and should prompt dermatologists to exercise more caution when using glucocorticoids for treatment.  相似文献   

2.
BackgroundDysfunction of central and skin Hypothalamic-Pituitary-Adrenal (HPA) axis play important roles in pathogenesis of atopic dermatitis (AD). Our previous studies showed that several Chinese herbs could improve HPA axis function. In this study, we evaluated the anti-inflammatory effects of BuShenYiQi granule (BSYQ), a Chinese herbs formula, in AD mice and explored the effective mechanism from regulation of HPA axis.MethodsThe ovalbumin (OVA) induced AD mice model were established and treated with BSYQ. We evaluated dermatitis score and histology analysis of dorsal skin lesions, meanwhile, serum corticosterone (CORT), adrenocorticotropic hormone (ACTH), corticotropin-releasing hormone (CRH) and inflammatory cytokines were determined by ELISA. The changes of CRH/proopiomelanocortin(POMC) axis elements, corresponding functional receptors and crucial genes of glucocorticosteroidogenesis in the skin were measured by quantitative real-time PCR and western blot, respectively.ResultsThe symptoms and pathological changes in skin of AD mice were significantly improved and several markers of inflammation and allergy descended obviously after BSYQ treatment. We found that AD mice had insufficient central HPA tone, but these conditions were markedly improved after BSYQ treatment. The AD mice also showed a disturbed expression of skin HPA. In lesion skin of AD mice, the mRNA and protein expressions of CRH decreased significantly, on the contrary, POMC and cytochrome P450 side-chain cleavage enzyme (CYP11A1) increased markedly, meanwhile, NR3C1 (mouse GR), CRHR2 and 11-hydroxylase type 1(CYP11B1) were reduced locally. Most of these tested indexes were improved after BSYQ treatment.ConclusionsAD mice displayed the differential expression pattern of central and skin HPA axis and BSYQ treatment significantly alleviated the symptoms of AD mice and presented anti-inflammatory and anti-allergic effects via regulating the expression of central and skin HPA axis.  相似文献   

3.
Mice lacking the substance P (SP) neurokinin-1 (NK1) receptor (NK1R?/?mice) were used to investigate whether SP affects serotonin (5-HT) function in the brain and to assess the effects of acute immobilisation stress on the hypothalamic–pituitary–adrenocortical (HPA) axis and 5-HT turnover in individual brain nuclei. Basal HPA activity and the expression of hypothalamic corticotropin-releasing hormone (CRH) in wild-type (WT)- and NK1R?/? mice were identical. Stress-induced increases in plasma ACTH concentration were considerably higher in NK1R?/? mice than in WT mice while corticosterone concentrations were equally elevated in both mouse lines. Acute stress did not alter the expression of CRH. In the dorsal raphe nucleus (DRN), basal 5-HT turnover was increased in NK1R?/? mice and a 15 min stress further magnified 5-HT utilisation in this region. In the frontoparietal cortex, medial prefrontal cortex, central nucleus of amygdala, and the hippocampal CA1 region, stress increased 5-HT and/or 5-hydroxyindoleacetic acid (5-HIAA) concentrations to a similar extent in WT and NK1R?/? mice. 5-HT turnover in the hypothalamic paraventricular nucleus was not affected by stress, but stress induced similar increases in 5-HT and 5-HIAA in the ventromedial and dorsomedial hypothalamic nuclei in WT and NK1R?/? mice. Our findings indicate that NK1 receptor activation suppresses ACTH release during acute stress but does not exert sustained inhibition of the HPA axis. Genetic deletion of the NK1 receptor accelerates 5-HT turnover in DRN under basal and stress conditions. No differences between the responses of serotonergic system to acute stress in WT and NK1R?/? mice occur in forebrain nuclei linked to the regulation of anxiety and neuroendocrine stress responses.  相似文献   

4.
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has a lifetime prevalence of 14% and is the most common urological diagnosis for men under the age of 50, yet it is the least understood and studied chronic pelvic pain disorder. A significant subset of patients with chronic pelvic pain report having experienced early life stress or abuse, which can markedly affect the functioning and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Mast cell activation, which has been shown to be increased in both urine and expressed prostatic secretions of CP/CPPS patients, is partially regulated by downstream activation of the HPA axis. Neonatal maternal separation (NMS) has been used for over two decades to study the outcomes of early life stress in rodent models, including changes in the HPA axis and visceral sensitivity. Here we provide a detailed protocol for using NMS as a preclinical model of CP/CPPS in male C57BL/6 mice. We describe the methodology for performing NMS, assessing perigenital mechanical allodynia, and histological evidence of mast cell activation. We also provide evidence that early psychological stress can have long-lasting effects on the male urogenital system in mice.  相似文献   

5.
6.
The mutant ubiquitin UBB(+1) is a substrate as well as an inhibitor of the ubiquitin-proteasome system (UPS) and accumulates in the neuropathological hallmarks of Alzheimer's disease (AD). A role for the UPS has been suggested in the generation of amyloid β (Aβ) plaques in AD. To investigate the effect of UBB(+1) expression on amyloid pathology in vivo, we crossed UBB(+1) transgenic mice with a transgenic line expressing AD-associated mutant amyloid precursor protein (APPSwe) and mutant presenilin 1 (PS1dE9), resulting in APPPS1/UBB(+1) triple transgenic mice. In these mice, we determined the Aβ levels at 3, 6, 9 and 11months of age. Surprisingly, we found a significant decrease in Aβ deposition in amyloid plaques and levels of soluble Aβ(42) in APPPS1/UBB(+1) transgenic mice compared to APPPS1 mice at 6months of age, without alterations in UBB(+1) protein levels or proteasomal chymotrypsin activity. These lowering effects of UBB(+1) on Aβ deposition were transient, as this relative decrease in plaque load was not significant in APPPS1/UBB(+1) mice at 9 and 11months of age. We also show that APPPS1/UBB(+1) mice exhibit astrogliosis, indicating that they may not be improved functionally compared to APPPS1 mice despite the Aβ reduction. The molecular mechanism underlying this decrease in Aβ deposition in APPPS1/UBB(+1) mice is more complex than previously assumed because UBB(+1) is also ubiquitinated at K63 opening the possibility of additional effects of UBB(+1) (e.g. kinase activation).  相似文献   

7.
Reciprocal interactions between central 5-HT system and hypothalamo-pituitary-adrenal (HPA) axis are of particular relevance with regard to depression, in which alterations of both systems have been evidenced. In order to further explore these interactions, two models of mutant mice have been used. They consisted of knock-out mice lacking the 5-HT transporter (5-HTT-/-) and of transgenic mice with impaired glucocorticoid receptor (GR-i) expression. Under control conditions. the functional properties of 5-HT(1A) autoreceptors in GR-i mice were as in their paired wild-type. However, both chronic stress and long term treatment with fluoxetine induced abnormal adaptive changes in 5-HT(1A) autoreceptor functioning in GR-i mice. On the other hand, a marked desensitization of 5-HT(1A) autoreceptors was found in 5-HTT-/- mice as compared with paired wild-type animals, and this phenomenon was further enhanced by exposure to stressful conditions. These data show that alterations of HPA axis at the gene level has consequences on 5-HT neurotransmission, and reciprocally, that 5-HTT knock-out affects HPA-dependent responses to stress.  相似文献   

8.
Urocortin 1 (UCN1) is a corticotropin-releasing factor (CRF)-like peptide whose role in stress is not well characterized. To study the physiological role of UCN1 in the response of the hypothalamic-pituitary-adrenal (HPA) axis to stress, we generated UCN1-knockout (KO) mice and examined their adaptation to repeated restraint and to cold environment. Wild-type (WT) and UCN1-KO animals were restrained hourly for 15 min from 9 AM to 2 PM, and blood samples were obtained for corticosterone measurement. WT animals adapted to repeated restraint with a decreased corticosterone response; the restraint-stimulated corticosterone levels fell from 215 +/- 31 ng/ml in na?ve animals to 142 +/- 50 ng/ml in mice subjected to repeated restraint (P < 0.01) and from 552 +/- 98 to 314 +/- 58 ng/ml (P < 0.001) in males and females, respectively. Male UCN1-KO mice did not show any adaptation to repeated restraint; instead, restraint-stimulated corticosterone levels were increased from 274 +/- 80 ng/ml in na?ve animals to 480 +/- 75 ng/ml in mice subjected to repeated restraint (P < 0.001). Female UCN1-KO mice showed only a partial adaptation to repeated restraint, with a decrease in the restraint-stimulated corticosterone response from 631 +/- 102 ng/ml in na?ve animals to 467 +/- 78 ng/ml in mice subjected to repeated restraint (P < 0.01). In addition, UCN1-KO mice showed no corticosterone response to 2-h cold environment. These data demonstrate an important role for UCN1 in the HPA axis adaptation to repeated restraint and in the corticosterone response to a cold environment.  相似文献   

9.
The mechanisms for activating the hypothalamic-pituitary-adrenal (HPA) axis and the roles glucocorticoids play in the pathogenesis of chronic infectious disease are largely undefined. Using the LP-BM5 model of retrovirus-induced immunodeficiency, we found alterations in HPA axis function, manifested as an increase in circulating levels of adrenocorticotropic hormone and corticosterone, beginning after only 3 mo of infection. These changes occurred contemporaneously with a shift in the profile of circulating cytokines from a Th1-dominant (IFN-gamma) to Th2-dominant (IL-4, IL-10) phenotype. No significant changes in either circulating IL-1beta, IL-6, or TNF-alpha levels were observed in infected mice. Administering the N-methyl-D-aspartate receptor antagonist MK-801 to infected mice normalized plasma adrenocorticotropic hormone and corticosterone levels, indicating that glutamate was a major activator of the HPA axis. Moreover, MK-801 treatment of late-stage mice also reversed the type 1 to type 2 cytokine shift to a degree comparable or superior to treatment with the glucocorticoid receptor antagonist RU-486. These findings indicate that HPA axis activation during LP-BM5 retrovirus infection is mediated by the chronic hyperactivation of glutamatergic pathways in the hypothalamus. Through this mechanism, the degree of peripheral immunodeficiency observed in the late-stage disease is profoundly augmented.  相似文献   

10.
Exogenous cannabinoids affect multiple hormonal systems including the hypothalamo-pituitary-adrenocortical (HPA) axis. These data suggest that endogenous cannabinoids are also involved in the HPA control; however, the mechanisms underlying this control are poorly understood. We assessed the role of endogenous cannabinoids in the regulation of the HPA-axis by studying CB1 receptor knockout (KO) and wild type (WT) mice. Basal and novelty stress-induced plasma levels of adrenocorticotropin (ACTH) and corticosterone were higher in CB1-KO than in WT mice. We investigated the involvement of the pituitary in the hormonal effects of CB1 gene disruption by studying the in vitro release of ACTH from anterior pituitary fragments using a perifusion system. Both the basal and corticotropin releasing hormone (CRH)-induced ACTH secretion were similar in CB1-KO and WT mice. The synthetic glucocorticoid, dexamethasone suppressed the CRH-induced ACTH secretion in both genotypes; thus, the negative feedback of ACTH secretion was not affected by CB1 gene disruption. The cannabinoid agonist, WIN 55,212-2 had no effects on basal and CRH-stimulated ACTH secretion by anterior pituitary slices. In our hands, the disruption of the CB1 gene lead to HPA axis hyperactivity, but the pituitary seems not to be involved in this effect. Our data are consistent with the assumption that endogenous cannabinoids inhibit the HPA-axis via centrally located CB1 receptors, however the understanding of the exact underlying mechanism needs further investigation.  相似文献   

11.
Stress pathways affect immune function, the most notable of these pathways being activation of the hypothalamic-pituitary-adrenal (HPA) axis. Although HPA activation has generally been relegated to an immunosuppressive role, recent evidence suggests that stress and HPA activation can be immunoenhancing in certain situations. To investigate specific effects of stress on immune function, we used a genetic model of chronic stress wherein transgenic mice overexpress corticotropin-releasing hormone (CRH), a primary mediator of the stress response. In these mice, CRH is overproduced in the brain, leading to chronic activation of the HPA axis. We found that CRH-transgenic mice have decreased leukocyte numbers in lymphoid compartments, with preferential loss of B lymphocytes. They also exhibit decreased Ab production and impaired isotype switching in response to immunization with a thymus-dependent Ag, phosphocholine-keyhole limpet hemocyanin. Despite these deficits, immunization protected CRH-transgenic and wild-type mice equally well against lethal challenge with Streptococcus pneumoniae, an encapsulated Gram-positive bacterium known to require Ab-mediated opsonization for clearance. While IgG responses are severely depressed in these mice, IgM titers are only modestly decreased. This fairly robust IgM response may be sufficient to protect against S. pneumoniae. Additionally, while total leukocyte numbers are decreased in these mice, neutrophil numbers are increased. This increase in number of neutrophils may compensate for the depressed IgG response, allowing adequate host defense during chronic stress.  相似文献   

12.
Increasing evidence suggests that the detrimental effects of glucocorticoid (GC) hypersecretion occur by activation of the hypothalamic-pituitary-adrenal (HPA) axis in several human pathologies, including obesity, Alzheimer's disease, AIDS dementia, and depression. The different patterns of response by the HPA axis during chronic activation are an important consideration in selecting an animal model to assess HPA axis function in a particular disorder. This article will discuss how chronic HPA axis activation and GC hypersecretion affect hippocampal function and contribute to the development of obesity. In the brain, the hippocampus has the highest concentration of GC receptors. Chronic stress or corticosterone treatment induces neuropathological alterations, such as dendritic atrophy in hippocampal neurons, which are paralleled by cognitive deficits. Excitatory amino acid (EAA) neurotransmission has been implicated in chronic HPA axis activation. EAAs play a major role in neuroendocrine regulation. Hippocampal dendritic atrophy may involve alterations in EAA transporter function, and decreased EAA transporter function may also contribute to chronic HPA axis activation. Understanding the molecular mechanisms of HPA axis activation will likely advance the development of therapeutic interventions for conditions in which GC levels are chronically elevated.  相似文献   

13.
Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.  相似文献   

14.
Isoprenoids and prenylated proteins have been implicated in the pathophysiology of Alzheimer disease (AD), including amyloid-β precursor protein metabolism, Tau phosphorylation, synaptic plasticity, and neuroinflammation. However, little is known about the relative importance of the two protein prenyltransferases, farnesyltransferase (FT) and geranylgeranyltransferase-1 (GGT), in the pathogenesis of AD. In this study, we defined the impact of deleting one copy of FT or GGT on the development of amyloid-β (Aβ)-associated neuropathology and learning/memory impairments in APPPS1 double transgenic mice, a well established model of AD. Heterozygous deletion of FT reduced Aβ deposition and neuroinflammation and rescued spatial learning and memory function in APPPS1 mice. Heterozygous deletion of GGT reduced the levels of Aβ and neuroinflammation but had no impact on learning and memory. These results document that farnesylation and geranylgeranylation play differential roles in AD pathogenesis and suggest that specific inhibition of protein farnesylation could be a potential strategy for effectively treating AD.  相似文献   

15.
Hypothalamus-pituitary-adrenal (HPA) hyperactivity is observed in many patients suffering from depression and the mechanism underling the dysfunction of HPA axis is not well understood. Chronic stress has a causal relationship with the hyperactivity of HPA axis. Stress induces the over-synthesis of glucocorticoids, which will arrive at all the body containing the brain. It is still complicated whether glucocorticoids account for chronic stress-induced HPA axis hyperactivity and in which part of the brain the glucocorticoids account for chronic stress-induced HPA axis hyperactivity. Here, we demonstrated that glucocorticoids were indispensable and sufficient for chronic stress-induced hyperactivity of HPA axis. Although acute glucocorticoids elevation in the hippocampus and hypothalamus exerted a negative regulation of HPA axis, we found that chronic glucocorticoids elevation in the hippocampus but not in the hypothalamus accounted for chronic stress-induced hyperactivity of HPA axis. Chronic glucocorticoids exposure in the hypothalamus still exerted a negative regulation of HPA axis activity. More importantly, we found mineralocorticoid receptor (MR) - neuronal nitric oxide synthesis enzyme (nNOS) - nitric oxide (NO) pathway mediated the different roles of glucocorticoids in the hippocampus and hypothalamus in regulating HPA axis activity. This study suggests that the glucocorticoids in the hippocampus play an important role in the development of HPA axis hyperactivity and the glucocorticoids in the hypothalamus can''t induce hyperactivity of HPA axis, revealing new insights into understanding the mechanism of depression.  相似文献   

16.
Little is known about the extent to which pathogenic factors drive the development of Alzheimer's disease (AD) at different stages of the long preclinical and clinical phases. Given that the aggregation of the β‐amyloid peptide (Aβ) is an important factor in AD pathogenesis, we asked whether Aβ seeds from brain extracts of mice at different stages of amyloid deposition differ in their biological activity. Specifically, we assessed the effect of age on Aβ seeding activity in two mouse models of cerebral Aβ amyloidosis (APPPS1 and APP23) with different ages of onset and rates of progression of Aβ deposition. Brain extracts from these mice were serially diluted and inoculated into host mice. Strikingly, the seeding activity (seeding dose SD50) in extracts from donor mice of both models reached a plateau relatively early in the amyloidogenic process. When normalized to total brain Aβ, the resulting specific seeding activity sharply peaked at the initial phase of Aβ deposition, which in turn is characterized by a temporary several‐fold increase in the Aβ42/Aβ40 ratio. At all stages, the specific seeding activity of the APPPS1 extract was higher compared to that of APP23 brain extract, consistent with a more important contribution of Aβ42 than Aβ40 to seed activity. Our findings indicate that the Aβ seeding potency is greatest early in the pathogenic cascade and diminishes as Aβ increasingly accumulates in brain. The present results provide experimental support for directing anti‐Aβ therapeutics to the earliest stage of the pathogenic cascade, preferably before the onset of amyloid deposition.  相似文献   

17.
Chronic psychosocial stress is increasingly being recognised as a risk factor for sporadic Alzheimer's disease (AD). The hypothalamic–pituitary–adrenal axis (HPA axis) is the major stress response pathway in the body and tightly regulates the production of cortisol, a glucocorticoid hormone. Dysregulation of the HPA axis and increased levels of cortisol are commonly found in AD patients and make a major contribution to the disease process. The underlying mechanisms remain poorly understood. In addition, within the general population there are interindividual differences in sensitivities to glucocorticoid and stress responses, which are thought to be due to a combination of genetic and environmental factors. These differences could ultimately impact an individuals’ risk of AD. The purpose of this review is first to summarise the literature describing environmental and genetic factors that can impact an individual's HPA axis reactivity and function and ultimately AD risk. Secondly, we propose a mechanism by which genetic factors that influence HPA axis reactivity may also impact inflammation, a key driver of neurodegeneration. We hypothesize that these factors can mediate glucocorticoid priming of the immune cells of the brain, microglia, to become pro-inflammatory and promote a neurotoxic environment resulting in neurodegeneration. Understanding the underlying molecular mechanisms and identifying these genetic factors has implications for evaluating stress-related risk/progression to neurodegeneration, informing the success of interventions based on stress management and potential risks associated with the common use of glucocorticoids.  相似文献   

18.
Acute nicotine administration has been shown to activate the hypothalamic-pituitary-adrenal (HPA) axis and stimulate secretion of adrenocorticotrophic hormone (ACTH), corticosterone/cortisol and beta-endorphin (beta-END) in both rodents and humans, raising the possibility that activation of the HPA axis by nicotine may mediate some of the effects of nicotine. Since stress can increase the risk of drug use and abuse, we hypothesized that repeated stress would increase the ability of nicotine to stimulate the secretion of HPA hormones. To test our hypothesis, mice were exposed to repeated stress (swimming in 15 degrees C water for 3 min/day for 5 days) and killed 15 min after injection of saline or nicotine (0.1 mg/kg, s.c.). Repeated exposure to stress increased the ability of nicotine to stimulate plasma ACTH (p<0.05) and beta-END (p<0.05), but not corticosterone secretion. In contrast, repeated exposure to stress increased the post-saline injection levels of corticosterone (p<0.05), but not ACTH and beta-END. The present results suggest that chronic stress leads to an enhanced sensitivity of some components of the HPA axis to a subsequent nicotine challenge.  相似文献   

19.
The putative effects of a tryptic bovine alphaS1-casein hydrolysate on stress-induced sleep disorders were investigated and their possible link with typical blood stress parameters such as plasma corticosterone concentrations and glycaemia was assessed. Rats were subjected to chronic stress in the form of environmental disturbances, while receiving an oral administration of the alphaS1-casein hydrolysate (CH). Chronic stress significantly reduced sleep duration in control rats during the first 2 days of the stress period, but stress-induced sleep disturbance was prevented in CH-treated rats. Indeed, CH administration allowed the maintenance of slow wave sleep (SWS) duration and even a slight increase in paradoxical sleep (PS) duration in treated rats. Results on plasma corticosterone concentrations and on glycemia values were inconclusive with respect to the implication of the HPA axis in this study. However, the protective effect of the alphaS1-casein hydrolysate on sleep during exposure to our chronic mild stress conditions may be mediated by modulation of the central adrenergic response.  相似文献   

20.
Amyloid plaques and neurofibrillary tangles are pathologic hallmarks of Alzheimer’s disease (AD). Endoplasmic reticulum (ER) stress has been implicated in the loss of neurons in AD. The phosphatase and tensin homolog deleted on chromosome ten (PTEN) plays an important role in regulating neuronal survival processes. However, the direct effects of the PTEN on ER stress and apoptosis in AD have not been elucidated. In this study, we demonstrate that the expression of PTEN and ER stress related proteins, GRP78 and CHOP, increased in APP/PS1 transgenic AD mice compared with WT mice. A PTEN inhibitor, dipotassium bisperoxo-(5-hydroxypyridine-2-carboxyl)-oxovanadate (bpv) could decrease apoptosis, induce AKT phosphorylation and inhibit the ER stress response proteins in hippocampus in APP/PS1 transgenic AD model mice. Furthermore, treatment with the specific PI3K inhibitor, LY294002, significantly blocked the anti-apoptotic effects of bpv in AD mice. The expression in GRP78, CHOP and apoptosis levels by bpv was reversed after PI3K inhibitor treatment. Taken together, our results indicate that the neuroprotective role of bpv involves the suppression of ER stress via the activation of the PI3K/AKT signalling pathways in APP/PS1 transgenic AD model mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号