首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Currently, sex differences in behavior are believed to result from sexually dimorphic neural circuits in the central nervous system (CNS). Drosophila melanogaster is a common model organism for studying the relationship between brain structure, behavior, and genes. Recent studies of sex‐specific reproductive behaviors in D. melanogaster have addressed the contribution of sexual differences in the CNS to the control of sex‐specific behaviors and the development of sexual dimorphism. For example, sexually dimorphic regions of the CNS are involved in the initiation of male courtship behavior, the generation of the courtship song, and the induction of male‐specific muscles in D. melanogaster. In this review, I discuss recent findings about the contribution of cell death to the formation of sexually dimorphic neural circuitry and the regulation of sex‐specific cell death by two sex determination factors, Fruitless and Doublesex, in Drosophila.  相似文献   

4.
5.
6.
The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naïve male in the single-choice courtship paradigm, we derive a model describing the logic of the network that integrates the various sensory stimuli and elicits this complex innate behavior. This approach and the model derived from it distinguish (i) between initiation and maintenance of courtship, (ii) between courtship in daylight and in the dark, where the male uses a scanning strategy to retrieve the decamping female, and (iii) between courtship towards receptive virgin females and mature males. The last distinction demonstrates that sexual orientation of the courting male, in the absence of discriminatory visual cues, depends on the integration of gustatory and behavioral feedback inputs, but not on olfactory signals from the courted animal. The model will complement studies on the connectivity and intrinsic properties of the neurons forming the circuitry that regulates male courtship behavior.  相似文献   

7.
Understanding how genes influence behavior, including sexuality, is one of biology's greatest challenges. Much of the recent progress in understanding how single genes can influence behavior has come from the study of innate behaviors in the fruit fly Drosophila melanogaster. In particular, the elaborate courtship ritual performed by the male fly has provided remarkable insights into how the neural circuitry underlying sexual behavior--which is largely innate in flies--is built into the nervous system during development, and how this circuitry functions in the adult. In this review we will discuss how genes of the sex determination pathway in Drosophila orchestrate the developmental events necessary for sex-specific behaviors and physiology, and the broader lessons this can teach us about the mechanisms underlying the development of sex-specific neural circuitry.  相似文献   

8.
Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments.  相似文献   

9.
Males of many animal species are reproductively limited by the difficulty and time costs of finding mates. Males of such species should be selected to take advantage of any cues that might reveal the location of prospective mates. Cues to female location are not restricted to those produced by females, but might also include the highly apparent courtship displays of males that have already found a female. By “eavesdropping” on these courting rivals, initiating sexual displays when courting rivals are detected (i.e., social facilitation of displays); males might effectively exploit the mate-searching efforts of their rivals. We tested the possibility that male Schizocosa ocreata wolf spiders exhibit social facilitation of courtship behaviors using a combination of live behavioral trials and video playback with single stimulus presentations. When exposed to visual cues from another male, male S. ocreata can discern the presence of another individual whether that individual is courting or not. However, we found no evidence of social facilitation of courtship or chemoexploratory behaviors in response to seismic or visual cues presented in isolation or combined. While complex, multimodal, male courtship signals are important in mate choice by female S. ocreata, males do not appear to use these cues to socially facilitate their own courtship.  相似文献   

10.
Pan Y  Robinett CC  Baker BS 《PloS one》2011,6(6):e21144
The innate sexual behaviors of Drosophila melanogaster males are an attractive system for elucidating how complex behavior patterns are generated. The potential for male sexual behavior in D. melanogaster is specified by the fruitless (fru) and doublesex (dsx) sex regulatory genes. We used the temperature-sensitive activator dTRPA1 to probe the roles of fru(M)- and dsx-expressing neurons in male courtship behaviors. Almost all steps of courtship, from courtship song to ejaculation, can be induced at very high levels through activation of either all fru(M) or all dsx neurons in solitary males. Detailed characterizations reveal different roles for fru(M) and dsx in male courtship. Surprisingly, the system for mate discrimination still works well when all dsx neurons are activated, but is impaired when all fru(M) neurons are activated. Most strikingly, we provide evidence for a fru(M)-independent courtship pathway that is primarily vision dependent.  相似文献   

11.
Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted.  相似文献   

12.
13.
14.
15.
The nonapeptide hormones arginine vasotocin and isotocin play important roles in mediating social behaviors in fishes. Studies in a diverse range of species demonstrate variation in vasotocin neuronal phenotypes across within and between sexes and species as well as effects of hormone administration on aggressive and sexual behaviors. However, patterns vary considerably across species and a general explanatory model for the role of vasotocin in teleost sociosexual behaviors has proven elusive. We review these findings, examine potential explanations for the lack of agreement across studies, and propose a model based on the parvocellular AVT neurons primarily mediating social approach and subordinance functions while the magnocellular and gigantocellular AVT neurons mediate courtship and aggressive behaviors. Isotocin neuronal phenotypes and effects on behavior are relatively unstudied, but research to date suggests this will be a fruitful line of inquiry. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

16.
Drosophila ananassae and D. pallidosa are closely related, sympatric species that lack postmating isolation. Sexual isolation has been considered important in maintaining them as independent species. To clarify the behavioral processes leading to sexual isolation, we analyzed behavioral sequences and examined the effect of courtship song on mating success and on behaviors of both sexes by surgically removing male wings (song generators), female aristae (song receivers), or female wings (means of fluttering). We found that heterospecific courtship songs evoked female wing fluttering, whereas conspecific courtship song did not. Furthermore, female wing fluttering made courting males discontinue courtship. These findings suggest that strong sexual isolation is achieved through the following behavioral sequence: heterospecific song→female wing fluttering→courtship discontinuation.  相似文献   

17.
We show that a small subset of two to six subesophageal neurons, expressing the male products of the male courtship master regulator gene products fruitlessMale (fruM), are required in the early stages of the Drosophila melanogaster male courtship behavioral program. Loss of fruM expression or inhibition of synaptic transmission in these fruM(+) neurons results in delayed courtship initiation and a failure to progress to copulation primarily under visually-deficient conditions. We identify a fruM-dependent sexually dimorphic arborization in the tritocerebrum made by two of these neurons. Furthermore, these SOG neurons extend descending projections to the thorax and abdominal ganglia. These anatomical and functional characteristics place these neurons in the position to integrate gustatory and higher-order signals in order to properly initiate and progress through early courtship.  相似文献   

18.
The courtship behaviors of two morphologically similar spider species, Schizocosa ocreata and S. rovneri, are distinctive and prevent interbreeding. We used “forced” copulation between these species to investigate the mode of inheritance of the courtship behavior and to determine whether postmating isolating mechanisms exist. F1 hybrids proved to be behaviorally sterile, but they were capable of producing viable offspring when forced to interbreed. Analysis of the courtship behaviors of F1, F2, and backcross progeny showed that the inheritance of some aspects of these behaviors is consistent with models involving single autosomal loci. The inheritance of secondary sexual characteristics in the males is also investigated. The genes for courtship behavior and secondary sexual characteristics do not assort independently. The origin of the premating isolating mechanisms may be explained by either an initial habitat separation between the two groups, or by a founding event with each group subsequently diverging in slightly different habitats. It is suggested that the differences in the microhabitats may have a profound effect on what type of signal (visual or vibratory) would be effective.  相似文献   

19.
20.
The neuropeptide SIFamide modulates sexual behavior in Drosophila   总被引:1,自引:0,他引:1  
The expression of Drosophila neuropeptide AYRKPPFNGSIFamide (SIFamide) was shown by both immunohistology and in situ hybridization to be restricted to only four neurons of the pars intercerebralis. The role of SIFamide in adult courtship behavior in both sexes was studied using two different approaches to perturb the function of SIFamide; targeted cell ablation and RNA interference (RNAi). Elimination of SIFamide by either of these methods results in promiscuous flies; males perform vigorous and indiscriminant courtship directed at either sex, while females appear sexually hyper-receptive. These results demonstrate that SIFamide is responsible for these behavioral effects and that the four SIFamidergic neurons and arborizations play an important function in the neuronal circuitry controlling Drosophila sexual behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号