首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular basis for cerebellar plasticity and motor learning remains controversial. Cerebellar Purkinje cells (PCs) contain a high concentration of cGMP-dependent protein kinase type I (cGKI). To investigate the function of cGKI in long-term depression (LTD) and cerebellar learning, we have generated conditional knockout mice lacking cGKI selectively in PCs. These cGKI mutants had a normal cerebellar morphology and intact synaptic calcium signaling, but strongly reduced LTD. Interestingly, no defects in general behavior and motor performance could be detected in the LTD-deficient mice, but the mutants exhibited an impaired adaptation of the vestibulo-ocular reflex (VOR). These results indicate that cGKI in PCs is dispensable for general motor coordination, but that it is required for cerebellar LTD and specific forms of motor learning, namely the adaptation of the VOR.  相似文献   

2.
A diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, produced and preassembled in the cytosol, are transported to the ciliary or flagellar compartment and anchored into the axonemal microtubular scaffold via the ODA docking complex (ODA-DC) system. In humans, defects in ODA assembly are the major cause of primary ciliary dyskinesia (PCD), an inherited disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality. Here, by combined high-throughput mapping and sequencing, we identified CCDC151 loss-of-function mutations in five affected individuals from three independent families whose cilia showed a complete loss of ODAs and severely impaired ciliary beating. Consistent with the laterality defects observed in these individuals, we found Ccdc151 expressed in vertebrate left-right organizers. Homozygous zebrafish ccdc151ts272a and mouse Ccdc151Snbl mutants display a spectrum of situs defects associated with complex heart defects. We demonstrate that CCDC151 encodes an axonemal coiled coil protein, mutations in which abolish assembly of CCDC151 into respiratory cilia and cause a failure in axonemal assembly of the ODA component DNAH5 and the ODA-DC-associated components CCDC114 and ARMC4. CCDC151-deficient zebrafish, planaria, and mice also display ciliary dysmotility accompanied by ODA loss. Furthermore, CCDC151 coimmunoprecipitates CCDC114 and thus appears to be a highly evolutionarily conserved ODA-DC-related protein involved in mediating assembly of both ODAs and their axonemal docking machinery onto ciliary microtubules.  相似文献   

3.
The establishment of left–right (L-R) asymmetry in vertebrates is dependent on the sensory and motile functions of cilia during embryogenesis. Mutations in CCDC11 disrupt L-R asymmetry and cause congenital heart disease in humans, yet the molecular and cellular functions of the protein remain unknown. Here we demonstrate that Ccdc11 is a novel component of centriolar satellites—cytoplasmic granules that serve as recruitment sites for proteins destined for the centrosome and cilium. Ccdc11 interacts with core components of satellites, and its loss disrupts the subcellular organization of satellite proteins and perturbs primary cilium assembly. Ccdc11 colocalizes with satellite proteins in human multiciliated tracheal epithelia, and its loss inhibits motile ciliogenesis. Similarly, depletion of CCDC11 in Xenopus embryos causes defective assembly and motility of cilia in multiciliated epidermal cells. To determine the role of CCDC11 during vertebrate development, we generated mutant alleles in zebrafish. Loss of CCDC11 leads to defective ciliogenesis in the pronephros and within the Kupffer’s vesicle and results in aberrant L-R axis determination. Our results highlight a critical role for Ccdc11 in the assembly and function of motile cilia and implicate centriolar satellite–associated proteins as a new class of proteins in the pathology of L-R patterning and congenital heart disease.  相似文献   

4.
CCDC28B (coiled-coil domain-containing protein 28B) was identified as a modifier in the ciliopathy Bardet-Biedl syndrome (BBS). Our previous work in cells and zebrafish showed that CCDC28B plays a role regulating cilia length in a mechanism that is not completely understood. Here we report the generation of a Ccdc28b mutant mouse using CRISPR/Cas9 (Ccdc28b mut). Depletion of CCDC28B resulted in a mild phenotype. Ccdc28b mut animals i) do not present clear structural cilia affectation, although we did observe mild defects in cilia density and cilia length in some tissues, ii) reproduce normally, and iii) do not develop retinal degeneration or obesity, two hallmark features of reported BBS murine models. In contrast, Ccdc28b mut mice did show clear social interaction defects as well as stereotypical behaviors. This finding is indeed relevant regarding CCDC28B as a modifier of BBS since behavioral phenotypes have been documented in BBS. Overall, this work reports a novel mouse model that will be key to continue evaluating genetic interactions in BBS, deciphering the contribution of CCDC28B to modulate the presentation of BBS phenotypes. In addition, our data underscores a novel link between CCDC28B and behavioral defects, providing a novel opportunity to further our understanding of the genetic, cellular, and molecular basis of these complex phenotypes.  相似文献   

5.
Cell–cell and cell–matrix interactions are necessary for neuronal patterning and brain wiring during development. Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of remodelling the pericellular environment and regulating signaling pathways through cleavage of a large degradome. MMPs have been suggested to affect cerebellar development, but the specific role of different MMPs in cerebellar morphogenesis remains unclear. Here, we report a role for MMP-3 in the histogenesis of the mouse cerebellar cortex. MMP-3 expression peaks during the second week of postnatal cerebellar development and is most prominently observed in Purkinje cells (PCs). In MMP-3 deficient (MMP-3−/−) mice, a protracted granule cell (GC) tangential migration and a delayed GC radial migration results in a thicker and persistent external granular layer, a retarded arrival of GCs in the inner granular layer, and a delayed GABAergic interneuron migration. Importantly, these neuronal migration anomalies, as well as the consequent disturbed synaptogenesis on PCs, seem to be caused by an abnormal PC dendritogenesis, which results in reduced PC dendritic trees in the adult cerebellum. Of note, these developmental and adult cerebellar defects might contribute to the aberrant motor phenotype observed in MMP-3−/− mice and suggest an involvement of MMP-3 in mouse cerebellar development.  相似文献   

6.
Lgl1 was initially identified as a tumour suppressor in flies and is characterised as a key regulator of epithelial polarity and asymmetric cell division. A previous study indicated that More-Cre-mediated Lgl1 knockout mice exhibited significant brain dysplasia and died within 24 h after birth. To overcome early neonatal lethality, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in almost all cells in the cerebellum, and we examined the functions of Lgl1 in the cerebellum. Impaired motor coordination was detected in the mutant mice. Consistent with this abnormal behaviour, homozygous mice possessed a smaller cerebellum with fewer lobes, reduced granule precursor cell (GPC) proliferation, decreased Purkinje cell (PC) quantity and dendritic dysplasia. Loss of Lgl1 in the cerebellum led to hyperproliferation and impaired differentiation of neural progenitors in ventricular zone. Based on the TUNEL assay, we observed increased apoptosis in the cerebellum of mutant mice. We proposed that impaired differentiation and increased apoptosis may contribute to decreased PC quantity. To clarify the effect of Lgl1 on cerebellar granule cells, we used Math1-Cre to specifically delete Lgl1 in granule cells. Interestingly, the Lgl1-Math1 conditional knockout mice exhibited normal proliferation of GPCs and cerebellar development. Thus, we speculated that the reduction in the proliferation of GPCs in Lgl1-Pax2 conditional knockout mice may be secondary to the decreased number of PCs, which secrete the mitogenic factor Sonic hedgehog to regulate GPC proliferation. Taken together, these findings suggest that Lgl1 plays a key role in cerebellar development and folia formation by regulating the development of PCs.  相似文献   

7.
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.  相似文献   

8.
The Wnt/β-catenin signaling pathway plays crucial roles in early hindbrain formation, and its constitutive activity is associated with a subset of human medulloblastoma, a malignant childhood tumor of the posterior fossa. However, the precise function of Wnt/β-catenin signaling during cerebellar development is still elusive. We generated Math1-cre::Apc(Fl/Fl) mice with a conditional knockout for the Adenomatosis polyposis coli (Apc) gene that displayed a constitutive activity of Wnt/β-catenin signaling in cerebellar granule neuron precursors. Such mice showed normal survival without any tumor formation but had a significantly smaller cerebellum with a complete disruption of its cortical histoarchitecture. The activation of the Wnt/β-catenin signaling pathway resulted in a severely inhibited proliferation and premature differentiation of cerebellar granule neuron precursors in vitro and in vivo. Mutant mice hardly developed an internal granular layer, and layering of Purkinje neurons was disorganized. Clinically, these mice presented with significantly impaired motor coordination and ataxia. In summary, we conclude that cerebellar granule neurons essentially require appropriate levels of Wnt signaling to balance their proliferation and differentiation.  相似文献   

9.
Cerebellar dysfunction causes ataxia characterized by loss of balance and coordination. Until now, the molecular and neuronal mechanisms of several types of inherited cerebellar ataxia have not been completely clarified. Here, we report that leucine-rich G protein-coupled receptor 4 (Lgr4/Gpr48) is highly expressed in Purkinje cells (PCs) in the cerebellum. Deficiency of Lgr4 leads to an ataxia-like phenotype in mice. Histologically, no obvious morphological changes were observed in the cerebellum of Lgr4 mutant mice. However, the number of PCs was slightly but significantly reduced in Lgr4−/− mice. In addition, in vitro electrophysiological analysis showed an impaired long term depression (LTD) at parallel fiber-PC (PF-PC) synapses in Lgr4−/− mice. Consistently, immunostaining experiments showed that the level of phosphorylated cAMP-responsive element-binding protein (Creb) was significantly decreased in Lgr4−/− PCs. Furthermore, treatment with forskolin, an adenylyl cyclase agonist, rescued phospho-Creb in PCs and reversed the impairment in PF-PC LTD in Lgr4−/− cerebellar slices, indicating that Lgr4 is an upstream regulator of Creb signaling, which is underlying PF-PC LTD. Together, our findings demonstrate for first time an important role for Lgr4 in motor coordination and cerebellar synaptic plasticity and provide a potential therapeutic target for certain types of inherited cerebellar ataxia.  相似文献   

10.
G protein-coupled receptors are involved in the modulation of complex neuronal networks in the brain. To investigate the impact of a cell-specific G(i/o) protein-mediated signaling pathway on brain function, we created a new optogenetic mouse model in which the G(i/o) protein-coupled receptor vertebrate rhodopsin can be cell-specifically expressed with the aid of Cre recombinase. Here we use this mouse model to study the functional impact of G(i/o) modulation in cerebellar Purkinje cells (PCs). We show that in vivo light activation of vertebrate rhodopsin specifically expressed in PCs reduces simple spike firing that is comparable with the reduction in firing observed for the activation of cerebellar G(i/o)-coupled GABA(B) receptors. Notably, the light exposure of the cerebellar vermis in freely moving mice changes the motor behavior. Thus, our studies directly demonstrate that spike modulation via G(i/o)-mediated signaling in cerebellar PCs affects motor coordination and show a new promising approach for studying the physiological function of G protein-coupled receptor-mediated signaling in a cell type-specific manner.  相似文献   

11.
As an adipokine, coiled-coil domain-containing 3 (CCDC3) plays multiple physiological roles in fatty liver, lipid metabolism, and abdominal obesity. Grass carp was selected as the experimental animal in this study to investigate the roles of Ccdc3 in teleosts. Results showed that the open reading frame (ORF) of cloned ccdc3 was 831 bp and encoded 276 amino acids. Three N-glycosylation sites and a predicted coiled-coil domain motif were located in the identified Ccdc3. Moreover, a nuclear localization signal (NLS) was contained in the coiled-coil domain motif of the identified Ccdc3. The results on tissue distribution revealed that ccdc3 was highly detected in grass carp fat and brain tissue. In the oral glucose tolerance test (OGTT), the expression of ccdc3 increased remarkably in the brain, hypothalamus, and visceral fat in the glucose treatment group. In the fasting and refeeding experiment, the ccdc3 expression levels were remarkably reduced in the brain, hypothalamus, and visceral fat after 14 days of fasting. In the refeeding group, the ccdc3 expression levels were considerably elevated compared with those in the fasting group. In the induced overfeeding experiment, the ccdc3 expression increased remarkably in the hepatopancreas, brain, and visceral fat tissues. The ccdc3 expression in the primary hepatocytes was remarkably increased with glucose, oleic acid, and insulin treatment. However, ccdc3 expression was markedly decreased with glucagon treatment. In conclusion, these results indicate that Ccdc3 is involved in regulating glucose and lipid metabolism of teleosts.  相似文献   

12.
In the embryonic neural tube, multiple signaling pathways work in concert to create functional neuronal circuits in the adult spinal cord. In the ventral neural tube, Sonic hedgehog (Shh) acts as a graded morphogen to specify neurons necessary for movement. In the dorsal neural tube, bone morphogenetic protein (BMP) and Wnt signals cooperate to specify neurons involved in sensation. Several signaling pathways, including Shh, rely on primary cilia in vertebrates. In this study, we used a mouse mutant with abnormal cilia, Arl13bhnn, to study the relationship between cilia, cell signaling, and neural tube patterning. Arl13bhnn mutants have abnormal ventral neural tube patterning due to disrupted Shh signaling; in addition, dorsal patterning defects occur, but the cause of these is unknown. Here we show that the Arl13bhnn dorsal patterning defects result from abnormal BMP signaling. In addition, we find that Wnt ligands are abnormally expressed in Arl13bhnn mutants; surprisingly, however, downstream Wnt signaling is normal. We demonstrate that Arl13b is required non-autonomously for BMP signaling and Wnt ligand expression, indicating that the abnormal Shh signaling environment in Arl13bhnn embryos indirectly causes dorsal defects.  相似文献   

13.
Morphogenesis during eye development requires retinoic acid (RA) receptors plus RA-synthesizing enzymes, and loss of RA signaling leads to ocular disorders associated with loss of Pitx2 expression in perioptic mesenchyme. Several Wnt signaling components are expressed in ocular tissues during eye development including Dkk2, encoding an inhibitor of Wnt/β-catenin signaling, which was previously shown to be induced by Pitx2 in the perioptic mesenchyme. Here, we investigated potential cross-talk between RA and Wnt signaling during ocular development. Genetic studies using Raldh1/Raldh3 double null mice deficient for ocular RA synthesis demonstrated that Pitx2 and Dkk2 were both down-regulated in perioptic mesenchyme. Chromatin immunoprecipitation and gel mobility shift studies demonstrated the existence of a DR5 RA response element upstream of Pitx2 that binds all three RA receptors in embryonic eye. Axin2, an endogenous readout of Wnt/β-catenin signaling, was up-regulated in cornea and perioptic mesenchyme of RA deficient embryos. Also, expression of Wnt5a was expanded in perioptic mesenchyme of RA deficient eyes. Our findings demonstrate excessive activation of Wnt signaling in the perioptic mesenchyme of RA deficient mice which may be responsible for abnormal development leading to defective optic cup, cornea, and eyelid morphogenesis.  相似文献   

14.
The canonical Wnt/β-catenin signaling plays essential role in development and diseases. Previous studies have implicated the canonical Wnt/β-catenin signaling in the regulation of normal palate development, but functional Wnt/β-catenin signaling and its tissue-specific activities remain to be accurately elucidated. In this study, we show that functional Wnt/β-catenin signaling operates primarily in the palate epithelium, particularly in the medial edge epithelium (MEE) of the developing mouse palatal shelves, consistent with the expression patterns of β-catenin and several Wnt ligands and receptors. Epithelial specific inactivation of β-catenin by the K14-Cre transgenic allele abolishes the canonical Wnt signaling activity in the palatal epithelium and leads to an abnormal persistence of the medial edge seam (MES), ultimately causing a cleft palate formation, a phenotype resembling that in Tgfβ3 mutant mice. Consistent with this phenotype is the down-regulation of Tgfβ3 and suppression of apoptosis in the MEE of the β-catenin mutant palatal shelves. Application of exogenous Tgfβ3 to the mutant palatal shelves in organ culture rescues the midline seam phenotype. On the other hand, expression of stabilized β-catenin in the palatal epithelium also disrupts normal palatogenesis by activating ectopic Tgfβ3 expression in the palatal epithelium and causing an aberrant fusion between the palate shelf and mandible in addition to severely deformed palatal shelves. Collectively, our results demonstrate an essential role for Wnt/β-catenin signaling in the epithelial component at the step of palate fusion during palate development by controlling the expression of Tgfβ3 in the MEE.  相似文献   

15.
16.
Coiled-coil domain containing 85c (Ccdc85c) is a causative gene for genetic hydrocephalus and subcortical heterotopia with frequent brain hemorrhage. In the present study, we examined the expression pattern of CCDC85C protein and intermediate filament proteins, such as nestin, vimentin, GFAP, and cytokeratin AE1/AE3, during lateral ventricle development in rats. CCDC85C was expressed in the neuroepithelial cells of the dorsal lateral ventricle wall, diminishing with development and almost disappearing at postnatal day 20. By immunoelectron microscopy, CCDC85C was localized in the cell-cell junction and apical membrane. The expression of nestin and vimentin was decreased in the wall of the lateral ventricle in manner similar to CCDC85C, but GFAP expression started immediately after birth and became stronger with age. Moreover, cytokeratin expression was found at postnatal day 13 and increased at postnatal day 20 in conjunction with the disappearance of CCDC85C expression. Taken together, CCDC85C is expressed in the cell-cell junctions lining the wall of the lateral ventricle and plays a role in neural development with other intermediate filaments in the embryonic and postnatal periods. Our chronological study will help to relate CCDC85C protein with intermediate filaments to elucidate the detailed role of CCDC85C protein during neurogenesis.  相似文献   

17.
Functional crosstalk between cell-surface and intracellular ion channels plays important roles in excitable cells and is structurally supported by junctophilins (JPs) in muscle cells. Here, we report a novel form of channel crosstalk in cerebellar Purkinje cells (PCs). The generation of slow afterhyperpolarization (sAHP) following complex spikes in PCs required ryanodine receptor (RyR)-mediated Ca(2+)-induced Ca(2+) release and the subsequent opening of small-conductance Ca(2+)-activated K(+) (SK) channels in somatodendritic regions. Despite the normal expression levels of these channels, sAHP was abolished in PCs from mutant mice lacking neural JP subtypes (JP-DKO), and this defect was restored by exogenously expressing JPs or enhancing SK channel activation. The stimulation paradigm for inducing long-term depression (LTD) at parallel fiber-PC synapses adversely established long-term potentiation in the JP-DKO cerebellum, primarily due to the sAHP deficiency. Furthermore, JP-DKO mice exhibited impairments of motor coordination and learning, although normal cerebellar histology was retained. Therefore, JPs support the Ca(2+)-mediated communication between voltage-gated Ca(2+) channels, RyRs and SK channels, which modulates the excitability of PCs and is fundamental to cerebellar LTD and motor functions.  相似文献   

18.
Wnt signaling is a major and highly conserved developmental pathway that guides many important events during embryonic and larval development. In adulthood, misregulation of Wnt signaling has been implicated in tumorigenesis and various age‐related diseases. These effects occur through highly complicated cell‐to‐cell interactions mediated by multiple Wnt‐secreted proteins. While they share a high degree of sequence similarity, their function is highly diversified. Although the role of Wnt ligands during development is well studied, very little is known about the possible actions of Wnt signaling in natural aging. In this study, Caenorhabditis elegans serves, for the first time, as a model system to determine the role of Wnt ligands in aging. Caenorhabditis elegans has five Wnt proteins, mom‐2, egl‐20, lin‐44, cwn‐1, and cwn‐2. We show that all five Wnt ligands are expressed and active past the development stages. The ligand mom‐2/Wnt plays a major detrimental role in longevity, whereas the function of lin‐44/Wnt is beneficial for long life. Interestingly, no evidence was found for Wnt signaling being involved in cellular or oxidative stress responses during aging. Our results suggest that Wnt signaling regulates aging‐intrinsic genetic pathways, opening a new research direction on the role of Wnt signaling in aging and age‐related diseases.  相似文献   

19.

Background

Sonic hedgehog (Shh) signaling in the mouse requires the microtubule-based organelle, the primary cilium. The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT) and the response to Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not overlap with phenotypes of known Wnt pathway mutants, recent studies report data suggesting that the primary cilium modulates responses to Wnt signals.

Methodology/Principal Findings

We therefore carried out a systematic analysis of canonical Wnt signaling in mutant embryos and cells that lack primary cilia because of loss of the anterograde IFT kinesin-II motor (Kif3a) or IFT complex B proteins (Ift172 or Ift88). We also analyzed mutant embryos with abnormal primary cilia due to defects in retrograde IFT (Dync2h1). The mouse IFT mutants express the canonical Wnt target Axin2 and activate a transgenic canonical Wnt reporter, BAT-gal, in the normal spatial pattern and to the same quantitative level as wild type littermates. Similarly, mouse embryonic fibroblasts (MEFs) derived from IFT mutants respond normally to added Wnt3a. The switch from canonical to non-canonical Wnt also appears normal in IFT mutant MEFs, as both wild-type and mutant cells do not activate the canonical Wnt reporter in the presence of both Wnt3a and Wnt5a.

Conclusions

We conclude that loss of primary cilia or defects in retrograde IFT do not affect the response of the midgestation embryo or embryo-derived fibroblasts to Wnt ligands.  相似文献   

20.

VGF nerve growth factor inducible (VGF) is a neuropeptide precursor induced by brain-derived neurotrophic factor and nerve growth factor. VGF is increased in the prefrontal cortex and cerebrospinal fluid in schizophrenia patients. In our previous study, VGF-overexpressing mice exhibited schizophrenia-like behaviors and smaller brain weights. Brain developmental abnormality is one cause of mental illness. Research on brain development is important for discovery of pathogenesis of mental disorders. In the present study, we investigated the role of VGF on cerebellar development. We performed a histological analysis with cerebellar sections of adult and postnatal day 3 mice by Nissl staining. To investigate cerebellar development, we performed immunostaining with antibodies of immature and mature granule cell markers. To understand the mechanism underlying these histological changes, we examined MAPK, Wnt, and sonic hedgehog signaling by Western blot. Finally, we performed rotarod and footprint tests using adult mice to investigate motor function. VGF-overexpressing adult mice exhibited smaller cerebellar sagittal section area. In postnatal day 3 mice, a cerebellar sagittal section area reduction of the whole cerebellum and external granule layer and a decrease in the number of mature granule cells were found in VGF-overexpressing mice. Additionally, the number of proliferative granule cell precursors was lower in VGF-overexpressing mice. Phosphorylation of Trk and Erk1 were increased in the cerebellum of postnatal day 3 VGF-overexpressing mice. Adult VGF-overexpressing mice exhibited motor disability. All together, these findings implicate VGF in the development of cerebellar granule cells via promoting MAPK signaling and motor function in the adult stage.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号