首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
An intimate interplay of the plasma membrane with curvature-sensing and curvature-inducing proteins would allow for defining specific sites or nanodomains of action at the plasma membrane, for example, for protrusion, invagination, and polarization. In addition, such connections are predestined to ensure spatial and temporal order and sequences. The combined forces of membrane shapers and the cortical actin cytoskeleton might hereby in particular be required to overcome the strong resistance against membrane rearrangements in case of high plasma membrane tension or cellular turgor. Interestingly, also the opposite might be necessary, the inhibition of both membrane shapers and cytoskeletal reinforcement structures to relieve membrane tension to protect cells from membrane damage and rupturing during mechanical stress. In this review article, we discuss recent conceptual advances enlightening the interplay of plasma membrane curvature and the cortical actin cytoskeleton during endocytosis, modulations of membrane tensions, and the shaping of entire cells.  相似文献   

2.
When neuroblastoma cells are exposed to lysophosphatidic acid (LPA), they undergo a vigorous, but transient blebbing phase. The effect is sensitive to inhibition by staurosporine, KT 5926 (an inhibitor of myosin light chain kinase), and cytochalasin B, suggesting that LPA activates the phosphorylation of myosin light chain and increases the contractile activity of the actomyosin network. Cell contractions increase the intracellular pressure driving bleb formation. Calyculin, an inhibitor of protein phosphatase2A, also causes blebbing which continues as long as the drug is present, presumably by keeping myosin light chain in the phosphorylated state. Blebbing of neuroblastoma cells is regulated by the status of all three cytoskeletal systems: disassembly of microtubules by nocodazole and of intermediate filaments by acrylamide increased the number of blebbing cells. Cytochalasin B, on the other hand, prevents bleb retraction and, after prolonged incubation, bleb formation. These results are discussed in terms of a model viewing the cytoskeleton as an integrated network transmitting force throughout the cell. Bleb retraction was studied by transfecting neuroblastoma cells with a vector containing the gene for gamma-cytoplasmic actin fused to the green fluorescent protein EGFP (EGFP-actin). EGFP-actin was not detected on the membranes of extending blebs, but started accumulating along the cytoplasmic surface of blebs as soon as the extension phase came to an end and retraction set in. These results confirm earlier suggestions that actin polymerization is required for bleb retraction and for the first time directly relate the two events.  相似文献   

3.
Cox DN  Muday GK 《The Plant cell》1994,6(12):1941-1953
N-1-Naphthylphthalamic acid (NPA) binding activity is released into the supernatant when plasma membranes are subjected to high-salt treatment, indicating that this activity is peripherally associated with the membrane. Extraction of plasma membrane vesicles with Triton X-100 resulted in retention of NPA binding activity in the detergent-insoluble cytoskeletal pellet. Treatment of this pellet with KI released NPA binding activity, actin, and alpha-tubulin. Dialysis to remove KI led to the repolymerization of cytoskeletal elements and movement of NPA binding activity into an insoluble cytoskeletal pellet. NPA binding activity partitioned into the detergent-insoluble cytoskeletal pellet obtained from both zucchini and maize membranes and was released from these pellets by KI treatment. Treatment of a cytoskeletal pellet with cytochalasin B doubled NPA binding activity in the resulting supernatant. Together, these experiments indicate that NPA binding activity is peripherally associated with the plasma membrane and interacts with the cytoskeleton in vitro.  相似文献   

4.
Septins are polymerizing GTP binding proteins required for cortical organization during cytokinesis and other cellular processes. A mammalian septin gene Sept4 is expressed mainly in postmitotic neural cells and postmeiotic male germ cells. In mouse and human spermatozoa, SEPT4 and other septins are found in the annulus, a cortical ring which separates the middle and principal pieces. Sept4-/- male mice are sterile due to defective morphology and motility of the sperm flagellum. In Sept4 null spermatozoa, the annulus is replaced by a fragile segment lacking cortical material, beneath which kinesin-mediated intraflagellar transport stalls. The sterility is rescued by injection of sperm into oocytes, demonstrating that each Sept4 null spermatozoon carries an intact haploid genome. The annulus/septin ring is also disorganized in spermatozoa from a subset of human patients with asthenospermia syndrome. Thus, cortical organization based on circular assembly of the septin cytoskeleton is essential for the structural and mechanical integrity of mammalian spermatozoa.  相似文献   

5.
Shan L  Thara VK  Martin GB  Zhou JM  Tang X 《The Plant cell》2000,12(12):2323-2337
The avrPto gene of Pseudomonas syringae pv tomato triggers race-specific resistance in tomato plants carrying Pto, a resistance gene encoding a protein kinase. When introduced into P. s. tabaci, avrPto triggers resistance in tobacco W38 plants that carry the corresponding R gene. The AvrPto protein is believed to be secreted into host cells through the bacterial type III secretion pathway, where it activates disease resistance in tomato by interacting with Pto. We report here the identification of two distinct regions in AvrPto that determine the recognition specificity of this protein in tomato and tobacco. Point mutations in the central region disrupted the avirulence activity in tomato but not in tobacco. Conversely, point mutations in the C-terminal region abolished the avirulence in tobacco but not in tomato. We further report that AvrPto was localized to the plasma membrane of plant cells. Disrupting the membrane association by mutating a putative myristoylation motif of AvrPto abolished the avirulence activity in both tomato and tobacco. These findings demonstrate that AvrPto is recognized differently by the R genes in tomato and tobacco and that the recognition of AvrPto probably is associated with the plasma membrane.  相似文献   

6.
7.
Interaction of the cytoskeleton with the plasma membrane   总被引:6,自引:0,他引:6  
  相似文献   

8.
Septins are conserved guanine nucleotide-binding proteins that polymerize into filaments at the cell cortex or in association with other cytoskeletal proteins, such as actin or microtubules. As integral players in many morphogenic and signaling events, septins form scaffolds important for the recruitment of the cytokinetic machinery, organization of the plasma membrane, and orientation of cell polarity. Mutations in septins or their misregulation are associated with numerous diseases. Despite growing appreciation for the importance of septins in different aspects of cell biology and disease, septins remain relatively poorly understood compared with other cytoskeletal proteins. Here in this review, we highlight some of the recent developments of the last two years in the field of septin cell biology.  相似文献   

9.
It is by now widely recognized that cell membranes show complex patterns of lateral organization. Two mechanisms involving either a lipid-dependent (microdomain model) or cytoskeleton-based (meshwork model) process are thought to be responsible for these plasma membrane organizations. In the present study, fluorescence correlation spectroscopy measurements on various spatial scales were performed in order to directly identify and characterize these two processes in live cells with a high temporal resolution, without any loss of spatial information. Putative raft markers were found to be dynamically compartmented within tens of milliseconds into small microdomains (? <120 nm) that are sensitive to the cholesterol and sphingomyelin levels, whereas actin-based cytoskeleton barriers are responsible for the confinement of the transferrin receptor protein. A free-like diffusion was observed when both the lipid-dependent and cytoskeleton-based organizations were disrupted, which suggests that these are two main compartmentalizing forces at work in the plasma membrane.  相似文献   

10.
Septin family proteins oligomerize through guanosine 5'-triphosphate-binding domains into core heteromers, which in turn polymerize at the cleavage furrow of dividing fungal and animal cells. Septin assemblies during the interphase of animal cells remain poorly defined and are the topic of this report. In this study, we developed protocols for visualization of authentic higher-order assemblies using tagged septins to effectively replace the endogenous gene product within septin core heteromers in human cells. Our analysis revealed that septins assemble into microtubule-supported, disk-like structures at the plasma membrane. In the absence of cell substrate adhesion, this is the predominant higher-order arrangement in interphase cells and each of the seven to eight septin family members expressed by the two analyzed cell types appears equally represented. However, studies of myeloid and lymphoid cell model systems revealed cell type-specific alterations of higher-order septin arrangements in response to substrate adhesion. Live-cell observations suggested that all higher-order septin assemblies are mutually exclusive with plasma membrane regions undergoing remodeling. The combined data point to a mechanism by which densely arranged cortical microtubules, which are typical for nonadhered spherical cells, support plasma membrane-bound, disk-like septin assemblies.  相似文献   

11.
The intent of this review was to point out the diversity of cellular functions thought to be mediated by PM—cytoskeleton interactions. Based upon possible molecular mechanism, the functions were categorized into those involving PM proteins which are dispersed and those involving clustered proteins. Functions associated with dispersed proteins are thought to mediate the stabilization and shape of the PM. Clustering of PM proteins provides the driving force inducing their interaction with the cytoskeleton. Clustering by external ligands, pH or ionic exchanges, etc., is also a means of transmembrane signalling. Various methods used to explore cytoskeletal—PM mediated functions were evaluated. The methods were considered separately under biophysical, morphological and biochemical headings. This made it easier to point out current and potential values of the methods as well as their limitations. Each method taken separately is insufficient to elucidate molecular mechanisms regulating cytoskeletal—PM reactions, but combined they hold great promise of future solutions.  相似文献   

12.
Serum from an individual with the CREST syndrome (calcinosis, Raynaud's phenomenon, esophageal dismotility, sclerodactyly, telangiectasia) reacts not only with kinetochores, but also with a cytoplasmic, phosphorylatable polypeptide, which is shown by immunofluorescence in whole cells and immunoelectronmicroscopy in sections to be associated with actin stress fibres in cultured mammalian cells. The antigen shows some variation in molecular weight between species, estimated by immunoblotting to range from 68 to 76 kD between mouse, Chinese hamster, sheep and human cells. Much of the polypeptide copurifies with coated vesicles, of which approx. 5% bound antibody from the serum, as detected by immunogold electronmicroscopy.  相似文献   

13.
Integrin-linked kinase (ILK) was identified by its interaction with the cytoplasmic tail of human beta1 integrin and previous data suggest that ILK is a component of diverse signaling pathways, including integrin, Wnt, and protein kinase B. Here we show that the absence of ILK function in Drosophila causes defects similar to loss of integrin adhesion, but not similar to loss of these signaling pathways. ILK mutations cause embryonic lethality and defects in muscle attachment, and clones of cells lacking ILK in the adult wing fail to adhere, forming wing blisters. Consistent with this, an ILK-green fluorescent protein fusion protein colocalizes with the position-specific integrins at sites of integrin function: muscle attachment sites and the basal junctions of the wing epithelium. Surprisingly, mutations in the kinase domain shown to inactivate the kinase activity of human ILK do not show any phenotype in Drosophila, suggesting a kinase-independent function for ILK. The muscle detachment in ILK mutants is associated with detachment of the actin filaments from the muscle ends, unlike integrin mutants, in which the primary defect is detachment of the plasma membrane from the extracellular matrix. Our data suggest that ILK is a component of the structure linking the cytoskeleton and the plasma membrane at sites of integrin-mediated adhesion.  相似文献   

14.
15.
Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.  相似文献   

16.
Concentrations of concanavalin A that induced patching and capping of cell surface receptors on Dictyostelium discoideum also induce binding of the receptors to the cortical cytoskeleton, which was isolated by density-gradient centrifugation. The receptors were solubilized by deoxycholate, purified by affinity chromatography, and used to determine whether the receptors bound directly to the cytoskeletal protein, actin. As the concentration of actin was increased, many of the receptors became bound to purified filamentous rabbit muscle actin, even in the absence of concanavalin A. As in the ligation-induced binding of receptors to the cortical cytoskeleton in cells, concanavalin A induced much stronger binding of the purified receptors to filamentous actin. The results were consistent with a previously stated hypothesis that induction of receptor binding to the cytoskeleton during their patching and capping is driven by clustering the receptors, which reduces their translational entropy and by doing so enhances their avidity for the cytoskeleton.  相似文献   

17.
Anillin is a conserved component of the contractile ring that is essential for cytokinesis, and physically interacts with three conserved cleavage furrow proteins, F-actin, myosin II and septins in biochemical assays. We demonstrate that the Drosophila scraps gene, identified as a gene involved in cellularization, encodes Anillin. We characterize defects in cellularization, pole cell formation and cytokinesis in a series of maternal effect and zygotic anillin alleles. Mutations that result in amino acid changes in the C-terminal PH domain of Anillin cause defects in septin recruitment to the furrow canal and contractile ring. These mutations also strongly perturb cellularization, altering the timing and rate of furrow ingression. They cause dramatic vesiculation of new plasma membranes, and destabilize the stalk of cytoplasm that normally connects gastrulating cells to the yolk mass. A mutation closer to the N terminus blocks separation of pole cells with less effect on cellularization, highlighting mechanistic differences between contractile processes. Cumulatively, our data point to an important role for Anillin in scaffolding cleavage furrow components, directly stabilizing intracellular bridges, and indirectly stabilizing newly deposited plasma membrane during cellularization.  相似文献   

18.
Exploitation of the host-cell actin cytoskeleton is pivotal for many microbial pathogens to enter cells, to disseminate within and between infected tissues, to prevent their uptake by phagocytic cells, or to promote intimate attachment to the cell surface. To accomplish this, these pathogens have evolved common as well as unique strategies to modulate actin dynamics at the plasma membrane, which will be discussed here, exemplified by a number of well-studied bacterial pathogens.  相似文献   

19.
We characterized the yeast actin cytoskeleton at the ultrastructural level using immunoelectron microscopy. Anti-actin antibodies primarily labeled dense, patchlike cortical structures and cytoplasmic cables. This localization recapitulates results obtained with immunofluorescence light microscopy, but at much higher resolution. Immuno-EM double-labeling experiments were conducted with antibodies to actin together with antibodies to the actin binding proteins Abp1p and cofilin. As expected from immunofluorescence experiments, Abp1p, cofilin, and actin colocalized in immuno-EM to the dense patchlike structures but not to the cables. In this way, we can unambiguously identify the patches as the cortical actin cytoskeleton. The cortical actin patches were observed to be associated with the cell surface via an invagination of plasma membrane. This novel cortical cytoskeleton- plasma membrane interface appears to consist of a fingerlike invagination of plasma membrane around which actin filaments and actin binding proteins are organized. We propose a possible role for this unique cortical structure in wall growth and osmotic regulation.  相似文献   

20.
Patterning of the membrane cytoskeleton by the extracellular matrix   总被引:2,自引:0,他引:2  
The extracellular matrices of different tissues contain components which affect the migration, morphology and differentiation of many types of cells. These forms of cell behavior often involve dramatic changes in cytoskeletal organization. Extracellular matrix components are recognized by specific cell surface receptors which span the membrane and interact with the actin cytoskeleton. In cultured cells, the matrix receptors are concentrated in sites of cell attachment called focal adhesions. Information that is conveyed from the extracellular matrix to the cytoskeleton may involve matrix components, cell surface receptors, as well as the proteins at the cytoplasmic face of the focal adhesion which link the receptors to the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号