首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Individuals infected with human T-cell lymphotropic virus type 1 (HTLV-1) develop a robust immune response to the surface envelope glycoprotein gp46 that is partially protective. The relative contribution of antibodies to conformation-dependent epitopes, including those mediating virus neutralization as part of the humoral immune response, is not well defined. We assess in this report the relationship between defined linear and conformational epitopes and the antibodies elicited to these domains. First, five monoclonal antibodies to linear epitopes within gp46 were evaluated for their ability to abrogate binding of three human monoclonal antibodies that inhibit HTLV-1-mediated syncytia formation and recognize conformational epitopes. Binding of antibodies to conformational epitopes was unaffected by antibodies to linear epitopes throughout the carboxy-terminal half and central domain of HTLV-1 gp46. Second, an enzyme-linked immunoadsorbent assay was developed and used to measure serum antibodies to native and denatured gp46 from HTLV-1-infected individuals. In sera from infected individuals, reactivity to denatured gp46 had an average of 15% of the reactivity observed to native gp46. Third, serum antibodies from 24 of 25 of HTLV-1-infected individuals inhibited binding of a neutralizing human monoclonal antibody, PRH-7A, to a conformational epitope on gp46 that is common to HTLV-1 and -2. Thus, antibodies to conformational epitopes comprise the majority of the immune response to HTLV-1 gp46, and the epitopes recognized by these antibodies do not appear to involve sequences in previously described immunodominant linear epitopes.  相似文献   

2.
To investigate the roles of human T-cell leukemia virus type 1 (HTLV-1) envelope (Env) proteins gp46 and gp21 in the early steps of infection, the effects of the 23 synthetic peptides covering the entire Env proteins on transmission of cell-free HTLV-1 were examined by PCR and by the plaque assay using a pseudotype of vesicular stomatis virus (VSV) bearing the Env of HTLV-1 [VSV(HTLV-1)]. The synthetic peptide corresponding to amino acids 400 to 429 of the gp21 Env protein (gp21 peptide 400-429, Cys-Arg-Phe-Pro-Asn-Ile-Thr-Asn-Ser-His-Val-Pro-Ile-Leu-Gln-Glu-Arg-P ro-Pro-Leu-Glu-Asn-Arg-Val-Leu-Thr-Gly-Trp-Gly-Leu) strongly inhibited infection of cell-free HTLV-1. By using the mutant peptide, Asn407, Ser408, and Leu413, -419, -424, and -429 were confirmed to be important amino acids for neutralizing activity of the gp21 peptide 400-429. Addition of this peptide before or during adsorption of HTLV-1 at 4 degrees C did not affect its entry. However, HTLV-1 infection was inhibited about 60% when the gp21 peptide 400-429 was added even 30 min after adsorption of HTLV-1 to cells, indicating that the amino acid sequence 400 to 429 on the gp21 Env protein plays an important role at the postbinding step of HTLV-1 infection. In contrast, a monoclonal antibody reported to recognize the gp46 191-196 peptide inhibited the infection of HTLV-1 at the binding step.  相似文献   

3.
To identify the regions that are important in human T-cell leukemia virus type 1 (HTLV-1) envelope function, we synthesized 23 kinds of peptides covering the envelope proteins and examined the inhibitory effect of each peptide on syncytium formation induced by HTLV-1-bearing cells. Of the 23 synthetic peptides, 2, corresponding to amino acids 197 to 216 on gp46 and 400 to 429 on gp21, inhibited syncytium formation induced by HTLV-1-bearing cells but did not affect syncytium formation induced by human immunodeficiency virus type 1-producing cells. The peptide concentrations giving 50% inhibition of syncytium formation for gp46 197 to 216 and gp21 400 to 429 were 14.9 and 6.0 microM, respectively. A syncytium formation assay with overlapping synthetic peptides containing amino acids 175 to 236 and 391 to 448 of the envelope proteins showed that syncytium formation was inhibited by peptides that contained the amino acid sequences 197 to 205 (Asp-His-Ile-Leu-Glu-Pro-Ser-Ile-Pro) and 397 to 406 (Gln-Glu-Gln-Cys-Arg-Phe- Pro-Asn-Ile-Thr). These observations suggest that the two regions corresponding to amino acids 197 to 216 and 400 to 429 are involved] in HTLV-1 envelope function.  相似文献   

4.
Human T-cell lymphotropic virus type 1 (HTLV-1) envelope proteins play an important role in viral entry into target cells. In a syncytium formation assay consisting of a coculture of HTLV-1-bearing cells and target cells, mature gp46 and gp21 proteins each inhibited syncytium formation induced by HTLV-1-bearing cells. Experiments with 125I-labeled proteins showed that 125I-gp46 bound specifically with MOLT-4 target cells even in the presence of large amounts of gp21, whereas 125I-gp21 binding to target cells was completely blocked in the presence of large amounts of gp46. These observations suggest that HTLV-1 envelope proteins in syncytium formation interact with at least two components, which are located close to each other on the cell membrane. We isolated two components from MOLT-4 cell lysate, using Sepharose 4B columns coupled with peptides corresponding to amino acids 197 to 216 and 400 to 429, respectively, of the envelope protein. One is a trypsin digestion-sensitive component of approximately 34 to 35 kDa, which interacts specifically with gp46. The other is a nonprotein component, which interacts with gp21. This component was destroyed by sodium periodate oxidation and was partitioned into the methanol-chloroform phase. These observations suggest that these two components play an important role in HTLV-1 entry into target cells via membrane fusion.  相似文献   

5.
Heterologous expression of the human T-cell lymphotropic virus type 1 (HTLV-1) envelope surface glycoprotein (gp46) in a vaccinia virus/T7 polymerase system resulted in the production of authentic recombinant gp46. Five differentially glycosylated forms of the surface envelope protein were produced by this mammalian system, as demonstrated by tunicamycin inhibition of N-glycosylation and N-glycan removal with endoglycosidase H and glycopeptidase F. These studies revealed that all four potential N-glycosylation sites in gp46 were used for oligosaccharide modification and that the oligosaccharides were mannose-rich and/or hybrid in composition. Conformational integrity of the recombinant HTLV-1 envelope protein was determined by the ability to bind to various HTLV-1-infected human sera and a panel of conformational-dependent human monoclonal antibodies under nondenaturing conditions. Furthermore, this recombinant gp46 was recognized by a series of HTLV-2-infected human sera and sera from a Pan paniscus chimpanzee infected with the distantly related simian T-cell lymphotropic virus STLVpan-p. Maintenance of highly conserved conformational epitopes in the recombinant HTLV-1 envelope protein structure suggests that it may serve as a useful diagnostic reagent and an effective vaccine candidate.  相似文献   

6.
Brighty DW  Jassal SR 《Journal of virology》2001,75(21):10472-10478
Entry of human T-cell leukemia virus type 1 (HTLV-1) into cells is mediated by the viral envelope glycoproteins gp46 and gp21. The gp46 surface glycoprotein binds to a poorly characterized cell surface receptor, thereby promoting the gp21-dependent fusion of the viral and cellular membranes. Interestingly, a synthetic peptide (P-197) simulating amino acids 197 to 216 of gp46 strongly inhibits envelope-dependent membrane fusion with Molt-4 target cells. It has been suggested that this peptide acts by competitively binding to Hsc70, a putative cellular receptor for HTLV-1. We now demonstrate that P-197 inhibits membrane fusion among diverse HTLV-1-permissive target cells. Importantly, most of these cells lack detectable levels of Hsc70, indicating that P-197 inhibits membrane fusion by a mechanism that is Hsc70 independent. We now suggest that competition for primary receptor binding is unlikely to account for the inhibitory activity of P-197. Understanding the mechanism by which P-197 functions may reveal concepts of general relevance to antiretroviral chemotherapy.  相似文献   

7.
The major receptors required for attachment and entry of the human T-cell leukemia virus type 1 (HTLV-1) remain to be identified. Here we demonstrate that a functional, soluble form of the HTLV-1 surface envelope glycoprotein, gp46, fused to an immunoglobulin Fc region (gp46-Fc) binds to heparan sulfate proteoglycans (HSPGs) on mammalian cells. Substantial binding of gp46-Fc to HeLa and Chinese hamster ovary (CHO) K1 cells that express HSPGs was detected, whereas binding to the sister CHO lines 2244, which expresses no HSPGs, and 2241, which expresses no glycosaminoglycans (GAGs), was much reduced. Enzymatic removal of HSPGs from HeLa and CHO K1 cells also reduced gp46-Fc binding. Dextran sulfate inhibited gp46-Fc binding to HSPG-expressing cells in a dose-dependent manner, whereas chondroitin sulfate was less effective. By contrast, dextran sulfate inhibited gp46-Fc binding to GAG-negative cells such as CHO 2244, CHO 2241, and Jurkat T cells weakly or not at all. Dextran sulfate inhibited HTLV-1 envelope glycoprotein (Env)-pseudotyped virus infection of permissive, HSPG-expressing target cells and blocked syncytium formation between HTLV-1 Env-expressing cells and HSPG-expressing permissive target cells. Finally, HSPG-expressing cells were more permissive for HTLV-1 Env-pseudotyped virus infection than HSPG-negative cells. Thus, similar to other pathogenic viruses, HTLV-1 may have evolved to use HSPGs as cellular attachment receptors to facilitate its propagation.  相似文献   

8.
Ten human monoclonal antibodies derived from peripheral B cells of a patient with human T-cell lymphotropic virus (HTLV)-associated myelopathy are described. One monoclonal antibody recognized a linear epitope within the carboxy-terminal 43 amino acids of HTLV gp21, and two monoclonal antibodies recognized linear epitopes within HTLV type 1 (HTLV-1) gp46. The remaining seven monoclonal antibodies recognized denaturation-sensitive epitopes within HTLV-1 gp46 that were expressed on the surfaces of infected cells. Two of these antibodies also bound to viable HTLV-2 infected cells and immunoprecipitated HTLV-2 gp46. Virus neutralization was determined by syncytium inhibition assays. Eight monoclonal antibodies, including all seven that recognized denaturation-sensitive epitopes within HTLV-1 gp46, possessed significant virus neutralization activity. By competitive inhibition analysis it was determined that these antibodies recognized at least four distinct conformational epitopes within HTLV-1 gp46. These findings indicate the importance of conformational epitopes within HTLV-1 gp46 in mediating a neutralizing antibody response to HTLV infection.  相似文献   

9.
为尽快研制出国产HTLV抗体诊断试剂,首先从福建HTLV流行区1名HTLV感染者外周血细胞中克隆出HTLV-Ⅰ的全长膜基因(env),继而结合文献报道、PSA1软件的新疏水性分析和EPI软件的B细胞表位分析数据,选择了gp46中段开始延伸至gp21N端212个氨基酸(aa185-aa396)的基因,并在3‘端通过(GlySer)2与人工合成的HTLV-Ⅱ型的型特异性表位区基因嵌合,插入原核表达载体pRSET,在E.coli中得到了高效表达目的蛋白产量约占菌体总蛋白的30%。通过Triton-X100洗涤,低湿度尿素逐步变性处理,8mol/L尿素溶解后纯度在75%左右,经电泳洗脱纯化,最终纯度可达95%短期,纯蛋白得率约为40%。经Western blottiong检测,该蛋白对4份HTLV-Ⅰ型和2份HTLV-Ⅱ型均有较强反应,而对4份阴性,血清无反应,从而可能用于研究HTLV抗体诊断试剂盒。  相似文献   

10.
We previously reported that the region corresponding to amino acids 197 to 216 of the gp46 surface glycoprotein (gp46-197) served as a binding domain for the interaction between gp46 and trypsin-sensitive membrane components of the target cell, leading to syncytium formation induced by human T-cell lymphotropic virus type 1 (HTLV-1)-bearing cells. Our new evidence shows that the 71-kDa heat shock cognate protein (HSC70) acts as a cellular receptor for syncytium formation. Using affinity chromatography with the peptide gp46-197, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, we isolated three components (bands A, B, and C) from MOLT-4 cell lysate which exhibited specific interactions with gp46 and inhibitory activities for syncytium formation induced by HTLV-1-bearing cells. Band A and B components were identified as HSC70 and β-actin, respectively, through amino acid sequencing by tandem mass spectrometry and immunostaining with specific monoclonal antibodies. Band C is likely to be a nonprotein component, because full activity for syncytium formation was seen after extensive trypsin digestion. Anti-HSC70 monoclonal antibody clearly blocked syncytium formation in a coculture of HTLV-1-bearing cells and indicator cells, whereas no inhibition was seen with anti-β-actin monoclonal antibody. Furthermore, flow cytometric analysis indicated that anti-HSC70 antibody reacted with MOLT-4 cells. Thus, we propose that HSC70 expressed on the target cell surface acts as a cellular acceptor to gp46 exposed on the HTLV-1-infected cell for syncytium formation, thereby leading to cell-to-cell transmission of HTLV-1.  相似文献   

11.
Defined segments of the transmembrane envelope glycoprotein (gp45) of equine infectious anemia virus were expressed as TrpLE fusion proteins and examined for their reactivity in Western immunoblots against a diverse panel of equine immune sera. The most immunogenic region of gp45 was localized to its amino terminus, positioned between the hydrophobic fusion and the transmembrane domains. A series of overlapping synthetic peptides were used in enzyme-linked immunosorbent assays to define an immunodominant epitope within this region. In contrast, the carboxy-terminal half of gp45 displayed both weak and variable immunoreactivity with equine immune sera.  相似文献   

12.
Two different approaches were used to map the type-specific regions on human T cell leukemia virus (HTLV) envelope glycoproteins. 1) Antibody reactivities of polymerase chain reaction-confirmed HTLV-I or HTLV-II carriers' sera were analyzed by Western blot assay with seven recombinant proteins containing different regions of HTLV-I or HTLV-II envelope proteins. 2) Rabbit antibodies elicited by nine HTLV-I Env synthetic peptides were used to react with the native HTLV envelope glycoproteins in an antibody-dependent cellular cytotoxicity (ADCC) assay. The results of the Western blot analysis showed that RP-B2, which contains amino acid residues 166 to 213 from HTLV-II exterior glycoprotein, was specifically reactive with 90.6% (48 of 53) of the HTLV-II carriers' sera but not with any of the HTLV-I carriers' serum (0 of 71). In contrast, RP-B, which contains amino acid residues 166 to 229 from HTLV-I exterior glycoprotein, was reactive with 85.1% (114 of 134) of the HTLV-I carriers' sera but not with any HTLV-II carrier serum (0 of 62). Furthermore, anti-HTLV-I Env synthetic peptide antibody-mediated ADCC identified several distinguishing HTLV-I ADCC epitopes in the middle region (amino acid residues 177 to 257) of the HTLV-I exterior glycoprotein. Therefore, HTLV type-specific epitopes reside mainly in a 69-amino acid sequence bounded by two cysteine residues (amino acids 157 and 225 for HTLV-I and 153 and 221 for HTLV-II), in the middle region of the exterior envelope glycoproteins.  相似文献   

13.
B-cell epitopes were selected from the gp21 and gp46 subunits of the envelope glycoprotein of human T-cell lymphotropic virus type 1 (HTLV-1) by computer-aided analyses of protein antigenicity. Molecular modeling was used to design and synthesize the epitopes as chimeric constructs with promiscuous T-helper epitopes derived either from the tetanus toxoid (amino acids 947-967) or measles virus fusion protein (amino acids 288-302). Circular dichroism measurements revealed that the peptides had a secondary structure that correlated well with the crystal structure data or predicted structure. The chimeric peptides were then evaluated for their immunogenicity in rabbits or mice. Antibodies against one of the epitopes derived from the gp21 subunit were found to be neutralizing in its ability to inhibit the formation of virus-induced syncytia. These studies underscore the importance of the gp21 transmembrane region for the development of vaccine candidates. The applicability of a chimeric approach is discussed in the context of recent findings regarding the role of gp21 transmembrane region in the viral fusion process.  相似文献   

14.
Antigenic sites on human T cell leukemia virus type I (HTLV-I) gp46 and gp21 envelope glycoproteins that are immunogenic in man were studied with envelope gene (env)-encoded synthetic peptides and a mAb to HTLV-I gp46 envelope glycoprotein. Antibodies in 78% of sera from HTLV-I seropositive subjects reacted with synthetic peptide 4A (amino acids 190 to 209) from a central region of HTLV-I gp46. Human anti-HTLV-I antibodies also bound to synthetic peptides 6 (29% of sera) and 7 (18% of sera) from a C-terminal region of gp46 (amino acids 296 to 312) and an N-terminal region of gp21 (amino acids 374 to 392), respectively. mAb 1C11 raised to affinity-purified HTLV-I gp46 reacted with gp46 external envelope glycoprotein and gp63 envelope precursor in immunoblot assay and also bound to the surface of HTLV-I+ cells lines HUT-102 and MT-2. Antibody 1C11 did not react with HTLV-II or HIV-infected cells or with a broad panel of normal human tissues or cell lines. In competitive RIA, anti-gp46 antibody 1C11 was inhibited from binding to gp46 either by antibodies from HTLV-I seropositive subjects or by HTLV-I env-encoded synthetic peptide 4A, indicating that 1C11 bound to or near a site on gp46 within amino acids 190 to 209 also recognized by antibodies from HTLV-I-seropositive individuals. When tested in syncytium inhibition assay, mAb 1C11 did not neutralize the infectivity of HTLV-I. Thus, HTLV-I infection in man is associated with a major antibody response to a region of gp46 within amino acids 190 to 209 that is on the surface of virus-infected cells.  相似文献   

15.
In vitro infection by human T-cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) can result in syncytium formation, facilitating viral entry. Using cell lines that were susceptible to HTLV-2-mediated syncytium formation but were nonfusogenic with HTLV-1, we constructed chimeric envelopes between HTLV-1 and -2 and assayed for the ability to induce syncytia in BJAB cells and HeLa cells. We have identified a fusion domain composed of the first 64 amino acids at the amino terminus of the HTLV-2 transmembrane protein, p21, the retention of which was required for syncytium induction. Construction of replication-competent HTLV genomic clones allowed us to correlate the ability of HTLV-2 to induce syncytia with the ability to replicate in BJAB cells. Differences in the ability to induce syncytia were not due to differences in the levels of total or cell membrane-associated envelope or in the formation of multimers. Therefore, we have localized a fusion domain within the amino terminus of the transmembrane protein of HTLV-2 envelope that is necessary for syncytium induction and viral replication.Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are type C retroviruses that have been associated with a variety of human malignancies. HTLV-1 is the etiological agent of adult T-cell leukemia as well as a degenerative neurological disorder, HTLV-1-associated myelopathy/tropical spastic paraparesis (28, 40, 58, 60, 83). Recent reports have also implicated HTLV-1 infection with arthropathy (42, 65), polymyosis (23, 37), and uveitis (48, 49, 51). HTLV-2 has been associated with a rare form of atypical hairy cell leukemia (62, 63, 68) as well as some cases of neuropathy (33, 39). It is estimated that between 10 million and 20 million individuals worldwide are infected with HTLV, with an overall risk of 5% of disease progression in infected individuals (14). HTLV is endemic in southern Japan, the Caribbean Basin, and Central and South America. In the United States, recent reports have identified a high proportion of HTLV, especially HTLV-2, infection in intravenous-drug abusers (44, 61, 64).Cell-to-cell contact is considered critical for the in vivo and in vitro transmission of HTLV-1 and HTLV-2, as infection by cell-free HTLV virus is inefficient in vitro and in vivo. By analogy with other enveloped viruses, HTLV infection of susceptible cells is likely mediated by the envelope glycoprotein. Antibodies against HTLV envelope are protective against infection in vivo (71, 80), and multiple epitopes that elicit neutralizing antibodies have been identified throughout the protein (31, 34, 56). Initially synthesized as a precursor protein, gp61, HTLV envelope is subsequently modified by glycosylation and cleaved into two subunits, gp46 and p21. The external surface glycoprotein, gp46, is anchored to the cell surface by noncovalent association with the transmembrane envelope glycoprotein, p21. Interaction of envelope with the as yet unidentified cellular receptor leads to cell-to-cell fusion and can result in syncytium formation.We were interested in identifying the molecular determinants of HTLV involved in syncytium formation and viral entry. Our laboratory has several cell lines that are permissive to HTLV-2- but not HTLV-1-mediated cell fusion. Therefore, we constructed recombinants between the HTLV-1 and -2 envelope genes and assayed for the loss of syncytium induction in BJAB cells and HeLa cells. Loss of a 64-amino-acid (aa) domain located at the amino terminus of the HTLV-2 transmembrane protein, p21, correlated with a loss in the ability of the envelope chimera to induce cell fusion. When the chimeric envelopes were expressed in the context of replication-competent genomic clones, there was a good correlation between syncytium induction and the ability to replicate in permissive cells. Present within the identified fusion domain is a hydrophobic region and a heptad repeat resembling a leucine zipper. We examined the contribution of the fusion domain to the structural integrity of the HTLV-2 envelope by using a vaccinia virus expression system. None of the recombinants affected the synthesis, transport, or oligomer formation of the HTLV glycoprotein complex.  相似文献   

16.
Infection of human cells by human T cell leukemia virus type 1 (HTLV-1) is mediated by the viral envelope glycoproteins. The gp46 surface glycoprotein binds to cell surface receptors, including heparan sulfate proteoglycans, neuropilin 1, and glucose transporter 1, allowing the transmembrane glycoprotein to initiate fusion of the viral and cellular membranes. The envelope glycoproteins are recognized by neutralizing Abs and CTL following a protective immune response, and therefore, represent attractive components for a HTLV-1 vaccine. To begin to explore the immunological properties of potential envelope-based subunit vaccine candidates, we have used a soluble recombinant surface glycoprotein (gp46, SU) fused to the Fc region of human IgG (sRgp46-Fc) as an immunogen to vaccinate mice. The recombinant SU protein is highly immunogenic and induces high titer Ab responses, facilitating selection of hybridomas that secrete mAbs targeting SU. Many of these mAbs recognize envelope displayed on the surface of HTLV-1-infected cells and virions and several of the mAbs robustly antagonize envelope-mediated membrane fusion and neutralize pseudovirus infectivity. The most potently neutralizing mAbs recognize the N-terminal receptor-binding domain of SU, though there is considerable variation in neutralizing proficiency of the receptor-binding domain-targeted mAbs. By contrast, Abs targeting the C-terminal domain of SU tend to lack robust neutralizing activity. Importantly, we find that both neutralizing and poorly neutralizing Abs strongly stimulate neutrophil-mediated cytotoxic responses to HTLV-1-infected cells. Our data demonstrate that recombinant forms of SU possess immunological features that are of significant utility to subunit vaccine design.  相似文献   

17.
The entry of human immunodeficiency virus type 1 (HIV-1) into target cells involves binding to the viral receptor (CD4) and membrane fusion events, the latter influenced by target cell factors other than CD4. The third variable (V3) region of the HIV-1 gp120 exterior envelope glycoprotein and the amino terminus of the HIV-1 gp41 transmembrane envelope glycoprotein have been shown to be important for the membrane fusion process. Here we demonstrate that some HIV-1 envelope glycoproteins containing an altered V3 region or gp41 amino terminus exhibit qualitatively different abilities to mediate syncytium formation and virus entry when different target cells are used. These results demonstrate that the structure of these HIV-1 envelope glycoprotein regions determines the efficiency of membrane fusion in a target cell-specific manner and support a model in which the gp41 amino terminus interacts directly or indirectly with the target cell during virus entry.  相似文献   

18.
We have generated a number of EBV-transformed B cell lines producing human mAb against human T cell leukemia virus type 1 (HTLV-1) from the peripheral blood B lymphocytes obtained from patients with HTLV-1-associated myelopathy/tropical spastic paraparesis. Various synthetic peptides corresponding to antigenic regions of HTLV-1 gag and env proteins were used for the screening of antibodies in ELISA. In our study, four IgG mAb to the gag p19 amino acids 100 to 130, and 5 IgG mAb to the env p46 amino acids 175 to 199 were characterized. An immunofluorescence assay showed that all of these mAb specifically bound to the surface of HTLV-1-bearing cell lines. Among these mAb, one anti-gp46 mAb, designated KE36-11, neutralized the infectivity of HTLV-1 as determined by both the inhibition of HTLV-1-induced syncytium formation and transformation assays in vitro. An antibody-binding assay using overlapping oligopeptides revealed that KE36-11 recognized a new epitope locating between the gp46 amino acid sequence 187-193 (Ala-Pro-Pro-Leu-Leu-Pro-His). Another anti-gp46 mAb, designated KE36-7, showed antibody-dependent cellular cytotoxicity against HTLV-1-bearing cell line. KE36-7 bound strongly to the 10-mer peptide-gp46 187-196, and weakly to peptides containing the gp46 amino acid sequence 191-196 (Leu-Pro-His-Ser-Asn-Leu). These two epitopes, which are associated with HTLV-1 neutralization and antibody-dependent cellular cytotoxicity, are thus the first epitopes identified in human HTLV-1 infection. It is possible that passive immunization of humans with these two human mAb are effective on the protection of HTLV-1 infection in vivo.  相似文献   

19.
We demonstrate a significantly high incidence of human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy (HAM)-or tropical spastic paraparesis (TSP)-like symptoms in WKA rats after injection with HTLV-1-producing MT-2 cells, while no symptoms were observed in F344 rats injected with MT-2 cells or in control WKA rats. Five of the eight (63%) WKA rats injected with MT-2 cells showed HAM/TSP-like paraparesis at 105 weeks of age, but none of seven MT-2-injected F344 rats or eight control WKA rats showed symptoms. This high incidence of HAM/TSP-like symptoms in WKA rats was statistically significant (P < 0.05). Six of the eight (75%) WKA rats injected with MT-2 cells showed HAM/TSP-like paraparesis at 108 weeks of age. HAM/TSP-like symptoms were also observed in one of the two WKA rats injected with HTLV-1-producing Ra-1 cells at 128 weeks of age. HTLV-1 provirus was detected in peripheral blood mononuclear cells in both WKA and F344 rats. The provirus was detected in the spinal cords of the HAM/TSP-like WKA rats that had severe neuropathological changes. WKA and F344 rats showed no significant difference in antibody response against HTLV-1 Gag antigen. However, the antibody response against the C-terminal half of gp46 HTLV-1 envelope protein was lower in WKA rats than in F344 rats. Pathological analysis of the HAM/TSP-like rats showed degeneration of the white matter of the spinal cord and peripheral nerves. These findings suggest that both the genetic background of the host and HTLV-1 infection are important in neuropathogenesis of HAM/TSP-like paraparesis in rats.  相似文献   

20.
Several cDNA clones encoding a 46-kDa collagen-binding glycoprotein (gp46) from rat skeletal myoblasts were isolated and sequenced. The cDNA encoded a 17-amino acid signal peptide and a 400-amino acid mature protein, containing three potential N-linked oligosaccharide attachment sites. The cDNA sequence of gp46 shows 93% identity in the coding region with J6, a retinoic acid-inducible gene coding for a protein of unknown function described from embryonal carcinoma F9 cells. The first 41 NH2-terminal amino acids of the predicted J6 sequence are, however, different from the gp46 sequence as a result of a 7-base pair insertion in the gp46 cDNA. In addition, the NH2-terminal amino acid sequence of hsp47, a collagen-binding protein found in chick embryo fibroblasts, shows 64% identity to gp46 over 36 residues. Interestingly, this alignment begins 10 residues inward from the first amino acid in the mature form of gp46. A significant sequence similarity was observed between gp46 and members of the serine protease inhibitor (serpin) family. Unlike other serpins, however, gp46 is both a heat shock and a collagen-binding protein and is localized to the lumen of the endoplasmic reticulum, as suggested by the presence of the RDEL sequence at the COOH terminus. This sequence is similar to other proposed endoplasmic reticulum retention signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号