共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Methods are described for obtaining explants which produce adventitious shoots, for subsequent stimulation of rooting and then transplanting using six commercial sugar-beet cultivars. The rate of adventitious shoot regeneration from petioles or intact leaf explants was affected by the source of donor plants, cytokinin type (BAP or Kin) and concentration and cultivar. Increasing the sucrose concentration of the medium from 3% to 5% or 8% had no apparent effect. Adventitious shoots could be produced directly from callus formed on the base of the petioles. In general adventitious shoots were produced on either the concave surface of the petiole or from the callus, occasionally simultaneously on both, and on the convex surface of the petiole in intact leaf explants. The highest rooting rate with 3% sucrose and 1.0 mg l–1 NAA was obtained using half-strength MS medium. There was considerable variation in the propagules from petioles or callus indicating that this system may provide valuable somaclonal variation.Abbreviations BAP
benzylaminopurine
- IBA
indole-3-butyric acid
- GA3
gibberellic acid
- MS
Murashige and Skoog medium
- NAA
naphthaleneacetic acid
Author for correspondence 相似文献
4.
Thomas Jahn Fredrik Johansson Hartwig Lüthen Dieter Volkmann Christer Larsson 《Planta》1996,199(3):359-365
In vivo treatment of maize (Zea mays L.) coleoptile segments with auxin (indole-3-acetic acid; IAA) and fusicoccin (FC) followed by plasma-membrane isolation was used to characterize the effects of these treatments on the plasma-membrane H+-ATPase. Both IAA and FC increased H+ extrusion and elongation rate of the coleoptile segments, FC more strongly than IAA. Plasma membranes isolated after in-vivo treatment with FC showed a twofold stimulation of ATP hydrolysis and a several-fold stimulation of H+ pumping, whereas no effect was observed after IAA treatment, irrespective of whether the plasma membranes were prepared by two-phase partitioning or sucrose-gradient centrifugation. A more detailed investigation of the kinetic properties and pH dependence of the enzyme showed that FC treatment led to a twofold increase in V
max, a decrease in K
m for ATP from 1.5 mM to 0.24 mM, and a change in pH dependence resulting in increased activity at physiological pH levels. Again, IAA treatment showed no effects. Quantitation of the H+-ATPase by immunostaining using four different antibodies revealed no difference between IAA-and FC-treated material, and controls. From these data we conclude that (i) neither IAA nor FC gives rise to an increase in the amount of H+ -ATPase molecules in the plasma membrane that can be detected after membrane isolation, and (ii) if the H+-ATPase is activated by IAA, this activation is, in contrast to FC activation, not detectable after membrane isolation.Abbreviations BTP
1,3-bis(tris[hydroxymethyl]methylamino)-propane
- FC
fusicoccin
- lyso-PC
lysophosphatidylcholine
- Mes
2-(N-morpholino)ethanesulfonic acid
This paper is dedicated to Prof. Dieter Klämbt on the occasion of his 65th birthdayWe thank Ann-Christine Holmström and Adine Karlsson for excellent technical assistance, Professor Ramón Serrano (Instituto de Biologia Molecular y Celular de Plantas, UPV-CSIC, Universidad Politecnica, Valencia, Spain) for a generous gift of antisera to the H+-ATPase and Professor Wolfgang Michalke (Institut für Biologie III, Albert-Ludwigs-Universität, Freiburg, Germany) for kindly providing the monoclonal antibody to the H+-ATPase. This work was supported by the Swedish Natural Science Research Council, the Deutsche Agentur für Raumfahrtangelegenheiten (DARA, Bonn) via AGRAVIS (Bonn) and by the Ministerium für Wissenschaft und Forschung (MWF, Düsseldorf). Thomas Jahn received scholarships from the Deutsche Graduiertenförderung des Landes Nordrhein-Westfalen and the Deutscher Akademischer Austauschdienst (DAAD, Bonn). 相似文献
5.
A. A. Kiladze A. G. Sukhomudrenko V. N. Shchipakin Yu. V. Evtodienko 《European biophysics journal : EBJ》1979,6(1):31-37
ATPase melting has been studied by circular dichroism and differential scanning microcalorimetry. Decomposition of the -helix of H+-ATPase (in which about 80% of the peptide groups of the enzyme are involved) following thermal treatment is shown to proceed gradually, beginning with room temperature. Effect of nucleotides upon melting is detected in the range of 20–40 C. Above 40 C, the pattern of thermal decomposition of the three-dimensional structure of H+-ATPase is independent of the nature of nucleotides present. Highly stable -helical sites have been found in the enzyme molecule. Possible mechanism of formation of such sites is discussed, and the results obtained are compared with data on thermal stability of ATPase from thermophilic bacteria. Structural changes in the molecule following thermal treatment are compared with ATPase activity changes under similar experimental conditions. 相似文献
6.
7.
高亲和性K+转运蛋白(high-affinity K+ transporter,HAK)是植物中最重要的K+转运蛋白家族之一,在植物K+吸收和转运过程中发挥重要功能。为探究甜菜BvHAK基因家族成员生物学功能及基因表达模式,采用生物信息学手段,预测了蛋白质的理化性质、基因结构、染色体定位、系统进化、保守基序、三维结构、互作网络、启动子顺式作用元件,并通过qRT-PCR分析了盐胁迫下BvHAKs基因在甜菜不同组织中的表达水平。共鉴定出10个甜菜BvHAK基因家族成员,含有8-10个外显子、7-9个内含子;平均氨基酸个数为778.30,平均分子量为88.31 kDa,等电点为5.38-9.41,跨膜区为11-14个。BvHAK4、-5、-7和-13定位在质膜,而其余定位在液泡膜。系统进化分析发现,高等植物HAK可分为5个簇,分别为Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ簇,其中Ⅱ簇成员可进一步分为Ⅱa、Ⅱb和Ⅱc等3个亚簇;BvHAK家族成员则分布在前4簇,分别含有1、6、1和2个成员。甜菜BvHAK基因家族主要含有胁迫响应元件、激素响应元件和生长发育响应元件。进一步对BvHAK基因在盐处理下甜菜不同组织中的表达模式分析发现,50和100 mmol/L NaCl不同程度地诱导甜菜地上部和根部BvHAK基因家族成员的表达;高盐(150 mmol/L)则下调了其在地上部的表达水平。这些结果表明,BvHAK基因家族在响应盐胁迫过程中起重要作用。 相似文献
8.
Sugar beet grown in pots was sprayed with N6-(m-hydroxybenzyl)adenosine, (mOH)- [9R]BAP, one of the synthetic cytokinins. Root tissue was then examined for respiration and for H+-adenosinetriphosphatase activity and both leaf and root tissue served as the object for 6-deoxy-D-glucose and 2-aminoisobutyric
acid uptake estimations. Treatment with (mOH)[9R]BAP depressed the uptake of oxygen by the roots of both young and old plants by 17 – 30 % while addition of (mOH)[9R]BAP to the respiring slices decreased it by 10 – 23 %. Uptake of 6-deoxy-D-glucose was mostly diminished byin vivo spraying with the cytokinin (by up to 12 % in leaves and by up to 60 % in roots), as well as by adding it to the experimental
vessel (insignificantly in the leaves but by up to 80 % in the roots). The H+-ATPase activity was stimulated bothin vivo andin vitro appreciably in young plants but not at all in plants at the end of their vegetation period.
Acknowledgement: The work described here was supported by grant No. 501/94/0413 of the Grant Agency of the Czech Republic 相似文献
9.
Functional properties and the localization of essential SH-groups of the tonoplast H+-ATPase fromZea mays L. were studied. In contrast to the pyrophosphate-dependent H+-translocation activity of the tonoplast, the H+-ATPase activity was inhibited by SH-blocking agents, such as N-ethylmaleimide and iodoacetic acid. In the case ofp-hydroxymercuribenzoate, HgCl2 and oxidized glutathione, the inhibition could be reversed by adding reduced glutathione or dithiothreitol.
Incubation of tonoplast vesicles with oxidized glutathione or N-ethylmaleimide in the presence of Mg·ADP—a competitive inhibitor
of the ATP-dependent H+ pump—avoided the inhibition of the H+-pumping activity. This effect is an indication for the occurrence of essential SH-groups at the catalytic site of the H+-ATPase.
In order to characterize the active center these thiols were specifically labeled with maleimidobutyrylbiocytin. Subsequently,
the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to an immobilizing
membrane. The maleimidobutyrylbiocytin-labeled active-center protein was detected by a biotin-streptavidin-peroxidase staining
system and was shown to be a 70-kDa subunit of the tonoplast H+-ATPase. It is suggested that the oxidation state of the critical sulfhydryl groups within the active center of the enzyme
and their reversible blocking by endogenous compounds might be of great importance for the regulation of the enzyme activity
in vivo. 相似文献
10.
Stomatal movement is controlled by external and internal signals such as light, phytohormones or cytoplasmic Ca2+. Using Vicia faba L., we have studied the dose-dependent effect of auxins on the modulation of stomatal opening, mediated through the activity of the plasma-membrane H+-ATPase. The patch-clamp technique was used to elucidate the electrical properties of the H+-ATPase as effected by growth regulators and seasonal changes. The solute composition of cytoplasmic and extracellular media was selected to record pump currents directly with high resolution. Proton currents through the ATPase were characterized by a voltage-dependent increase in amplitude, positive to the resting potential, reaching a plateau at more depolarized values. Upon changes in extracellular pH, the resting potential of the cell shifted with a non-Nernst potential response (±21 mV), indicating the contribution of a depolarizing ionic conductance other than protons to the permeability of the plasma membrane. The use of selective inhibitors enabled us to identify the currents superimposing the H+-pump as carried by Ca2+. Auxinstimulation of this electroenzyme resulted in a rise in the outwardly directed H+ current and membrane hyperpolarization, indicating that modulation of the ATPase by the hormone may precede salt accumulation as well as volume and turgor increase. Annual cycles in pump activity (1.5–3.8 μA · cm-2) were expressed by a minimum in pump current during January and February. Resting potentials of up to -260 mV and plasmamembrane surface area, on the other hand, did not exhibit seasonal changes. The pump activity per unit surface area was approximately 2- to 3-fold higher in guard cells than in mesophyll cells and thus correlates with their physiological demands. 相似文献
11.
Günther F. E. Scherer 《Planta》1984,160(4):348-356
A new method of preparing sealed vesicles from membrane fractions of pumpkin hypocotyls in ethanolamine-containing buffers was used to investigate the subcellular localization of H+-ATPase measured as nigericin-stimulated ATPase. In a fluorescence-quench assay, the H+ pump was directly demonstrated. The H+ pump was substrate-specific for Mg·ATP and 0.1 mM diethylstilbestrol completely prevented the development of a pH. The presence of unsupecific phosphatase hampered the detection of nigericin-stimulated ATPase. Unspecific phosphatases could be demonstrated by comparing the broad substrate specificity of the hydrolytic activities of the fractions with the clear preference for Mg·ATP as the substrate for the proton pump. Inhibitor studies showed that neither orthovanadate nor molybdate are absolutely specific for ATPase or acid phosphatase, respectively. Diethylstilbestrol seemed to be a specific inhibitor of ATPase activity in fractions containing nigericin-stimulated ATPase, but it stimulated acid phosphatase which tended to obscure its effect on ATPase activity. Nigericin-stimulated ATPase had its optimum at pH 6.0 and the nigericin effect was K+-dependent. The combination of valinomycin and carbonylcyanide m-chlorophenylhydrazone had a similar effect to nigericin, but singly these ionophores were much less stimulatory. After prolonged centrifugation on linear sucrose gradients, nigericin-stimulated ATPase correlated in dense fractions with plasma membrane markers but a part of it remained at the interphase. This lessdense part of the nigericin-stimulated ATPase could be derived from tonoplast vesicles because -mannosidase, an enzyme of the vacuolar sap, remained in the upper part of the gradient. Nigericinstimulated ATPase did not correlate with the mitochondrial marker, cytochrome c oxidase, whereas azide inhibition of ATPase activity did.Abbreviations CCCP
carbonylcyanide m-chlorophenylhydrazone
- DES
dethyltilbestrol 相似文献
12.
13.
The auxin sensitivity of the plasma-membrane H+-ATPase from tobacco leaves (Nicotiana tabacum L. cv. Xanthi) depends on the physiological state of the plant (Santoni et al., 1990, Plant Sci. 68, 33–38). Results based on the study of auxin sensitivity according to culture conditions which accelerate or delay tobacco development demonstrate that the highest auxin sensitivity is always associated with the end of the period of induction to flowering. Auxin stimulation of H+-translocation activity corresponds to an increase of the apparent ATPase affinity for ATP. The plasma-membrane H+-ATPase content, measured with an enzyme-linked immunosorbent assay using a specific anti-H+-ATPase antibody, varies according to plant development, and was found to increase by 100% during floral induction. The specific molecular ATPase activity also changes according to plant development; more particularly, the decrease in molecular ATPase activity upto and during the floral-induction period parallels the increase of sensitivity to indole-3-acetic acid.Abbreviations ELISA
enzyme-linked immunosorbent assay
- PAGE
polyacrylamide gel electrophoresis
- SDS
sodium dodecyl sulfate
Authors are grateful to Mrs. Grosclaude (Lab. Virologie, INRA, Jouy-en-Josas, France) and Mrs. Boudon (Lab. Mycoplasmes, INRA, Dijon, France) for support and advice in the preparation of antibodies. This work was supported by grants No. 89/512/6 from the E.P.R of Bourgogne and No. 89 C 0662 from M.R.T. 相似文献
14.
Employing a simple one-step sucrose gradient fractionation method, gastric mucosal membrane of Syrian hamster was prepared and demonstrated to be specifically enriched in H+,K+-ATPase activity. The preparation is practically devoid of other ATP hydrolyzing activity and contains high K+-stimulated ATPase, activity of at least 4–5 fold compared to basal ATPase activity. The H+,K+-ATPase showed hydroxylamine-sensitive phosphorylation and K+-dependent dephosphorylation of the phospho-enzyme, characteristic inhibition by vanadate, omeprazole and SCH 28080, and nigericin-reversible K+-dependent H+-transport — properties characteristic of gastric proton pump One notable difference with H+,K+-ATPase of other species has been the observation of valinomycin-independent H+ transport in such membrane vesicles. It is proposed that such H+,K+-ATPase-rich hamster gastric mucosal membrane preparation might provide a unique model to study physiological aspects of H+,K+-ATPase-function in relation to HCl secretion. 相似文献
15.
In situ plasma membrane H+-ATPase activity was monitored during pH-regulated dimorphism of Candida albicans using permeabilized cells. ATPase activity was found to increase in both the bud and germ tube forming populations at 135 min which coincides with the time of evagination. Upon reaching the terminal phenotype the mycelial form exhibited higher H+-ATPase activity as compared to the yeast form. At the time of evagination H+-efflux exhibited an increase. K+ depletion resulted in attenuated ATPase activity and glucose induced H+-efflux. The results demonstrate that ATPase may play a regulatory role in dimorphism of C. albicans and K+ acts as a modulator.Abbreviations PM
Plasma membrane
- pHi
intracellular pH
- Pi
inorganic phosphorus
- TET
Toluene: Ethanol: Triton X-100 相似文献
16.
Hai-Jun Gong Kun-Ming Chen Guo-Cang Chen Suo-Min Wang Cheng-Lie Zhang 《Plant Growth Regulation》2003,40(2):139-145
The influence of drought stress on the ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activity by plasma membrane H+-ATPase was investigated using purified plasma membrane vesicles from wheat leaves by two-phase partitioning. Drought stress increased the ATPase activity, and the optimal pH was shifted from 6.5 to about 7.0. Drought stress also stimulated the PNPP hydrolysis rate. The Km for PNPP hydrolysis was moved from 4.49 ± 0.33 mM to 3.64 ± 0.12 mM. In addition, the PNPP hydrolysis was more sensitive to vanadate under drought compared to the control. However, the inhibitory effect of hydroxylamine on the ATPase was not changed by the present drought stress. In addtion, drought stress also decreased the trypsin activation of PNPP hydrolysis by PM H+-ATPase. These results suggested that drought stress altered the catalytic mechanism of the plasma membrane H+-ATPase, and the stimulation of its activity by drought stress was mainly due to increase of the catalytic activity of its phosphatase domain. It is also suggested that drought stress might alter the structure or property of the C-terminal end of PM H+-ATPase, therefore increasing the catalytic activity of the phosphatase domain. 相似文献
17.
W. H. M. Peters A. G. H. Ederveen M. H. L. Salden J. J. H. H. M. de Pont S. L. Bonting 《Journal of bioenergetics and biomembranes》1984,16(3):223-232
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase. 相似文献
18.
Maria de Lourdes Oliveira Otoch Alana Cecília Menezes Sobreira Maria Erivalda Farias de Arago Elena Graciela Orellano Maria da Guia Silva Lima Dirce Fernandes de Melo 《Journal of plant physiology》2001,158(5)
Salt modulation of the tonoplast H+-pumping V-ATPase and H+-PPase was evaluated in hypocotyls ofVigna unguiculata seedlings after 3 and 7 days of treatment. In 3-day-old seedlings, treatment with 100 mmol/L NaCl decreased the proton transport and hydrolytic activities of both the V-ATPase and the H+-PPase. After 7 days, the proton transport and hydrolysis activities of the V-ATPase were higher, while the H+-PPase activities were lower in seedlings. Western blot analysis of A- and B-subunits of V-ATPase revealed that the protein content of the two subunits varied in parallel with their activities, i.e. to a higher activity corresponded a higher protein content of the subunits and vice versa. Contrarily, Western blot analysis of H+-PPase levels failed to show any correlation with PPase activity, suggesting a partial enzyme inactivation. The results indicate that salt stress induces V-ATPase expression inV. unguiculata with concomitant enhancement of its activity as a homeostatic mechanism to cope with salt stress. Under the same conditions PPase is inhibited. 相似文献
19.
Francisco Campos José R. Perez-Castiñeira José M. Villalba Francisco A. Culiañez-Marciá Federico Sanchez Ramón Serrano 《Plant molecular biology》1996,32(6):1043-1053
Legume nodules have specialized transport functions for the exchange of carbon and nitrogen compounds between bacteroids and root cells. Plasma membrane-type (vanadate-sensitive) H+-ATPase energizes secondary active transporters in plant cells and it could drive exchanges across peribacteroidal and plasmatic membranes. A nodule cDNA corresponding to a major isoform of Phaseolus vulgaris H+-ATPase (designated BHA1) has been cloned. BHA1 is a functional proton pump because after removal of its inhibitory domain and can complement a yeast mutant unable to synthesize a H+-ATPase. BHA1 is not nodule-specific, since it is also expressed in roots of uninfected plants. It belongs to the subfamily of plasma membrane H+-ATPases defined by the Arabidopsis AHA1, AHA2 and AHA3 genes and the tobacco PMA4 and corn MHA2 genes. In situ hybridization in nodule sections indicates high expression of BHA1 limited to uninfected cells. These results were confirmed by immunocytochemistry. The relatively low expression of plasma membrane-type H+-ATPase in Rhizobium-infected cells put a note of caution on the origin of the vanadate-sensitive ATPase described in preparations of peribacteroidal membranes. Also, our results indicate that active transport in symbiotic nodules is most intense at the plasma membrane of uninfected cells and support a specialized role of uninfected tissue for nitrogen transport. 相似文献