首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The thermodynamics and kinetics for base-pair opening of the P1 duplex of the Tetrahymena group I ribozyme were studied by NMR hydrogen exchange experiments. The apparent equilibrium constants for base pair opening were measured for most of the imino protons in the P1 duplex using the base catalysts NH3, HPO4(2-) or TRIS. These equilibrium constants were also measured for several modified P1 duplexes, and the C-2.G23 base pair was the most stable base pair in all the duplexes. The conserved U-1*G22 base pair is required for activity of the ribozyme and the data here show that this wobble base pair destabilizes neighboring base pairs on only one side of the wobble. A 2'-OMe modification on the U-3 residue stabilized its own base pair but had little effect on the neighboring base pairs. Three base pairs, U-1*G22, C-2*G23 and A2*U21 showed unusual equilibrium constants for opening and possible implications of the opening thermodynamics of these base pairs on the undocking rates of the P1 helix with catalytic core are discussed.  相似文献   

2.
Thermodynamics of left-handed helix formation   总被引:1,自引:0,他引:1  
H H Klump 《FEBS letters》1986,196(1):175-179
The thermodynamics of right- and left-handed helix formation by poly[d(G-C)] X poly[d(G-C)] and by poly-(dG-m5dC) X poly(dG-m5dC) were measured spectrophotometrically and calorimetrically. From the spectrophotometric measurements the thermal stabilities of the alternative helical conformations were evaluated as a function of counterion concentration. From the calorimetric measurements the enthalpies of either right-handed or left-handed helix formation were determined. The corresponding experimental delta H values are -8.6 and -11.2 kcal/mol base pairs for the two conformations in poly[dG-C)] X poly[d(G-C)], and -9.0 and -12.7 kcal/mol base pairs, respectively, for poly(dG-m5dC) X poly(dG-m5dC).  相似文献   

3.
P J Flor  J B Flanegan    T R Cech 《The EMBO journal》1989,8(11):3391-3399
Site-specific mutagenesis of the self-splicing Tetrahymena intron has been used to investigate the function of C109-G212, a conserved base pair in the P4 stem of group I introns. Mutation of C109 to G affects splicing only slightly, whereas mutation of G212 to A or C reduces the rate of splicing substantially (500-fold reduction in kcat/Km under standard in vitro splicing conditions for the G212C mutant). Splicing activity of the compensatory double mutant (C109G:G212C) is intermediate between those of the two single mutants. Thus, the stability of the P4 stem as well as the identity of the base at position 212 are important for self-splicing. Single and double mutants containing the G212C substitution have a decreased temperature optimum for self-splicing and are partially Mg2+ suppressible, both indicative of structural destabilization. Chemical structure mapping indicates that the mutations do not redirect the global folding of the RNA, but affect the structure locally and at one other site (A183) that is distant in the secondary structure. We propose that, in addition to its pairing in P4, G212 is involved in a base triplet or an alternate base pair that contributes to the catalytically active tertiary structure of the ribozyme.  相似文献   

4.
Folding mechanism of the Tetrahymena ribozyme P4-P6 domain   总被引:2,自引:0,他引:2  
Synchrotron X-ray-dependent hydroxyl radical footprinting was used to probe the folding kinetics of the P4-P6 domain of the Tetrahymena group I ribozyme, which forms a stable, closely packed tertiary structure. The 160-nt domain folds independently at a similar rate (approximately 2 s(-1)) as it does in the ribozyme, when folding is measured in 10 mM sodium cacodylate and 10 mM MgCl(2). Surprisingly, tertiary interactions around a three-helix junction (P5abc) within the P4-P6 domain fold at least 25 times more rapidly (k >/= 50 s(-1)) in isolation, than when part of the wild-type P4-P6 RNA. This difference implies that long-range interactions in the P4-P6 domain can interfere with folding of P5abc. P4-P6 was observed to fold much faster at higher ionic strength than in 10 mM sodium cacodylate. Analytical centrifugation was used to measure the sedimentation and diffusion coefficients of the unfolded RNA. The hydrodynamic radius of the RNA decreased from 58 to 46 A over the range of 0-100 mM NaCl. We propose that at low ionic strength, the addition of Mg(2+) causes the domain to collapse to a compact intermediate where P5abc is trapped in a non-native structure. At high ionic strength, the RNA rapidly collapses to the native structure. Faster folding most likely results from a different average initial conformation of the RNA in higher salt conditions.  相似文献   

5.
The highly conserved P7 region is generally believed to act as a major portion of the catalytic site in the Group I intron ribozyme. However, its functions have not been elucidated except for the fact that it specifically binds a cofactor guanosine required for self-splicing reaction. We attempted an in vitro selection experiment to determine the sequence requirements of this region in the mechanism of catalysis by using the Tetrahymena ribozyme. We found that the selected active clones have the secondary structure similar to that of the wild type with few exceptions. However, their primary sequences were not conserved except G264 and C311 that are the major elements of the binding site for the guanosine. Our results suggest that the unique secondary structure of the P7 region is a primary requisite for the catalytic function of this class of ribozymes.  相似文献   

6.
We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a Monte Carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure. The minimal active ribozyme has been studied extensively, showing stabilization of the active structure by cations and dynamic motion of the active structure. Here, we introduce a simple model of tertiary-structure formation that leads to a phase diagram for the RNA as a function of temperature and tertiary-structure strength. We then employ this model to capture many folding/unfolding events and to examine the transition-state ensemble (TSE) of the RNA during folding to its active “docked” conformation. The TSE is compact but with few tertiary interactions formed, in agreement with single-molecule dynamics experiments. To compare with experimental kinetic parameters, we introduce a novel method to benchmark Monte Carlo kinetic parameters to docking/undocking rates collected over many single molecular trajectories. We find that topology alone, as encoded in a biased potential that discriminates between secondary and tertiary interactions, is sufficient to predict the thermodynamic behavior and kinetic folding pathway of the hairpin ribozyme. This method should be useful in predicting folding transition states for many natural or man-made RNA tertiary structures.  相似文献   

7.
The Tetrahymena ribozyme possesses peripheral domains, termed P9.1 and P9.2. They are nonessential in the mechanism of the catalytic reaction but contribute to enhance the catalytic activity of the ribozyme. It has been postulated that P9.1 is capable of forming Watson-Crick base pairings with another peripheral domain, P2.1. We report here the existence of long-range base pairings between the loop regions of these two domains and show that this interaction apparently plays a role in enhancing the catalytic activity of the ribozyme.  相似文献   

8.
Ohki Y  Ikawa Y  Shiraishi H  Inoue T 《FEBS letters》2001,493(2-3):95-100
The Tetrahymena group I ribozyme requires a hierarchical folding process to form its correct three-dimensional structure. Ribozyme activity depends on the catalytic core consisting of two domains, P4-P6 and P3-P7, connected by a triple-helical scaffold. The folding proceeds in the following order: (i) fast folding of the P4-P6 domain, (ii) slow folding of the P3-P7 domain, and (iii) structure rearrangement to form the active ribozyme structure. The third step is believed to directly determine the conformation of the active catalytic domain, but as yet the precise mechanisms remain to be elucidated. To investigate the folding kinetics of this step, we analyzed mutant ribozymes having base substitution(s) in the triple-helical scaffold and found that disruption of the scaffold at A105G results in modest slowing of the P3-P7 folding (1.9-fold) and acceleration of step (iii) by 5.9-fold. These results suggest that disruption or destabilization of the scaffold is a normal component in the formation process of the active structure of the wild type ribozyme.  相似文献   

9.
10.
The formation of individual tertiary contacts of the Tetrahymena L-21 Sca I ribozyme has been monitored by hydroxyl radical footprinting and its global conformation by analytical ultracentrifugation as a function of monovalent ion concentration in the absence of divalent ions. Advanced methods of data analysis, which allow the hydroxyl radical reactivity of every nucleotide to be quantified, permit monitoring of each and every structural element of the RNA. Monovalent ion-mediated global compaction of the ribozyme is accompanied by the formation of native tertiary contacts; most native tertiary contacts are evident except several that are located near where divalent ions are observed in crystallographic structures. Non-native tertiary contacts are also observed at low but not high concentrations of monovalent ions. In light of recent studies that have shown that the presence of monovalent ions greatly accelerates the Mg2+-dependent folding of the Tetrahymena ribozyme, the present studies suggest that Na+ concentration changes not only the starting position of the RNA on its folding funnel but also pushes it deep into the well by forming native tertiary contacts and, thus, favoring fast and correct folding pathways.  相似文献   

11.
P5abc domain of Tetrahymena LSU intron functions as an activator that is not essential for but enhances the activity of the ribozyme either when present in cis or when added in trans. This domain contains three regions (A-rich bulge, L5b, and L5c) that have been demonstrated to interact with the rest of the intron. Although these regions are presumably important for efficient activation, the role of each element is not understood in the mechanism of activation. We employed circularly permuted introns and examined the roles of each element. The results show that each of the three elements can activate the intron independently. We also found that a correlation between the activation by P5abc and the physical affinity of P5abc to the intron exists.  相似文献   

12.
The rate of double helix formation by single-stranded poly A plus poly dT, poly dA plus poly U, poly dA plus dT, poly G plus poly dC, poly dG plus poly C, and poly dG plus poly dC have been investigated and compared to rates of ribohomopolymer helix formation rates. After correction for molecular weight, comparisons of rate data at 30°C below the melting temperature of the double helix show that:
  • 1 Rates of helix formation by all combinations of guanine plus cytosine homopolymers are the same.
  • 1 The rate of helix formation for poly dA plus poly dT is three times faster than the rate for poly A plus poly U. Rates of formation of DNA-RNA hybrid molecules are intermediate between these two rates, but closer to the poly dA plus poly dT rate.
The effect of temperature on the rate of helix formation is interpreted in terms of a steady-state model for helix propagation. The results are consistent with a mechanism in which the formation of the second base pair is the rate-determining step.  相似文献   

13.
Condensed counterions contribute to the stability of compact structures in RNA, largely by reducing electrostatic repulsion among phosphate groups. Varieties of cations induce a collapsed state in the Tetrahymena ribozyme that is readily transformed to the catalytically active structure in the presence of Mg2+. Native gel electrophoresis was used to compare the effects of the valence and size of the counterion on the kinetics of this transition. The rate of folding was found to decrease with the charge of the counterion. Transitions in monovalent ions occur 20- to 40-fold faster than transitions induced by multivalent metal ions. These results suggest that multivalent cations yield stable compact structures, which are slower to reorganize to the native conformation than those induced by monovalent ions. The folding kinetics are 12-fold faster in the presence of spermidine3+ than [Co(NH3)6]3+, consistent with less effective stabilization of long-range RNA interactions by polyamines. Under most conditions, the observed folding rate decreases with increasing counterion concentration. In saturating amounts of counterion, folding is accelerated by addition of urea. These observations indicate that reorganization of compact intermediates involves partial unfolding of the RNA. We find that folding of the ribozyme is most efficient in a mixture of monovalent salt and Mg2+. This is attributed to competition among counterions for binding to the RNA. The counterion dependence of the folding kinetics is discussed in terms of the ability of condensed ions to stabilize compact structures in RNA.  相似文献   

14.
The time-course of monovalent cation-induced folding of the L-21 Sca1 Tetrahymena thermophila ribozyme and a selected mutant was quantitatively followed using synchrotron X-ray (.OH) footprinting. Initiating folding by increasing the concentration of either Na+ or K+ to 1.5M from an initial condition of approximately 0.008 M Na+ at 42 degrees C resulted in the complete formation of tertiary contacts within the P5abc subdomain and between the peripheral helices within the dead time of our measurements (k>50 s(-1)). These results contrast with folding rates of 2-0.2 s(-1) previously observed for formation of these contacts in 10mM Mg2+ from the same initial condition. Thus, the initial formation of native tertiary contacts is inhibited by divalent but not monovalent cations. The native contacts within the catalytic core form without a detectable burst phase at rates of 0.4-1.0 s(-1) in a manner reminiscent of the Mg2+-dependent folding behavior, although tenfold faster. The tertiary interactions stabilizing the catalytic core interaction with P4-P6 and P2.1, as well as one of the protections internal for the P4-P6 domain, display progress curves with appreciable burst amplitudes and a phase comparable in rate to that of the catalytic core. That the slow folding of the ribozyme's core is a consequence of the alt-P3 secondary structure is shown by the 100% burst phase amplitudes that are observed for folding of the U273A mutant ribozyme within which the native secondary structure (P3) is strengthened. Thus, formation of a misfolded intermediate(s) resulting from the alt-P3 secondary structure is independent of ion valency while the rate at which the respective intermediates are resolved is sensitive to ion valency. The overall portrait painted by these results is that ion valency differentially affects steps in the folding process and that folding in monovalent ion alone for the U273A mutant Tetrahymena ribozyme is fast and direct.  相似文献   

15.
The Tetrahymena group I intron ribozyme folds into a complex three dimensional structure for performing the self-splicing reaction. Catalysis depends on its core structure comprising two helical domains, P4-P6 and P3-P7. The two domains are joined by three sets of conserved base-triple(s) and other tertiary interactions. We found that the disruption of J8/7 X P4, one such conserved base-triple, causes the catalytic ability to deteriorate without altering the folding rate. This suggests that the base-triple stabilizes the active structure of the ribozyme but plays no significant role in RNA folding. By combining the present and previous results, it can be concluded that three sets of conserved base-triples play distinct roles in the Tetrahymena ribozyme.  相似文献   

16.
The glmS ribozyme is a catalytic RNA that self-cleaves at its 5'-end in the presence of glucosamine 6-phosphate (GlcN6P). We present structures of the glmS ribozyme from Thermoanaerobacter tengcongensis that are bound with the cofactor GlcN6P or the inhibitor glucose 6-phosphate (Glc6P) at 1.7 A and 2.2 A resolution, respectively. The two structures are indistinguishable in the conformations of the small molecules and of the RNA. GlcN6P binding becomes apparent crystallographically when the pH is raised to 8.5, where the ribozyme conformation is identical with that observed previously at pH 5.5. A key structural feature of this ribozyme is a short duplex (P2.2) that is formed between sequences just 3' of the cleavage site and within the core domain, and which introduces a pseudoknot into the active site. Mutagenesis indicates that P2.2 is required for activity in cis-acting and trans-acting forms of the ribozyme. P2.2 formation in a trans-acting ribozyme was exploited to demonstrate that N1 of the guanine at position 1 contributes to GlcN6P binding by interacting with the phosphate of the cofactor. At neutral pH, RNAs with adenine, 2-aminopurine, dimethyladenine or purine substitutions at position 1 cleave faster with glucosamine than with GlcN6P. This altered cofactor preference provides biochemical support for the orientation of the cofactor within the active site. Our results establish two features of the glmS ribozyme that are important for its activity: a sequence within the core domain that selects and positions the cleavage-site sequence, and a nucleobase at position 1 that helps position GlcN6P.  相似文献   

17.
We have previously proposed a hierarchical model for the folding mechanism of the Tetrahymena ribozyme that may illustrate general features of the folding pathways of large RNAs. While the role of elements in the conserved catalytic core of this ribozyme during the folding process is beginning to emerge, the participation of non-conserved peripheral extensions in the kinetic folding mechanism has not yet been addressed. We now show that the 3'-terminal P9.1-P9.2 extension of the Tetrahymena ribozyme plays an important role during the folding process and appears to guide formation of the catalytic core.  相似文献   

18.
C A Grosshans  T R Cech 《Biochemistry》1989,28(17):6888-6894
A shortened form of the self-splicing intervening sequence RNA of Tetrahymena thermophila acts as an enzyme, catalyzing sequence-specific cleavage of RNA substrates. We have now examined the metal ion requirements of this reaction. Mg2+ and Mn2+ are the only metal ions that by themselves give RNA enzyme activity. Atomic absorption spectroscopy indicates that Zn, Cu, Co, and Fe are not present in amounts equimolar to the RNA enzyme and when added to reaction mixtures do not facilitate cleavage. Thus, these ions can be eliminated as cofactors for the reaction. While Ca2+ has no activity by itself, it alleviates a portion of the Mg2+ requirement; 1 mM Ca2+ reduces the Mg2+ optimum from 2 to 1 mM. These results, combined with studies of the reactivity of mixtures of metal ions, lead us to postulate that two classes of metal ion binding sites are required for catalysis. Class 1 sites have more activity with Mn2+ than with Mg2+, with the other divalent ions and Na+ and K+ having no activity. It is not known if ions located at class 1 sites have specific structural roles or are directly involved in active-site chemistry. Class 2 sites, which are presumably structural, have an order of preference Mg2+ greater than or equal to Ca2+ greater than Mn2+ and Ca2+ greater than Sr2+ greater than Ba2+, with Zn2+, Cu2+, Co2+, Na+, and K+ giving no detectable activity over the concentration range tested.  相似文献   

19.
The solution structure of an RNA hairpin modelling the P5 helix of a group I intron, complexed with Co(NH3)63+, has been determined by nuclear magnetic resonance. Co(NH3)63+, which possesses a geometry very close to Mg(H2O)62+, was used to identify and characterize a Mg2+binding site in the RNA. Strong and positive intermolecular nuclear Overhauser effect (NOE) cross-peaks define a specific complex in which the Co(NH3)63+molecule is in the major groove of tandem G.U base-pairs. The structure of the RNA is characterized by a very low twist angle between the two G.U base-pairs, providing a flat and narrowed major groove. The Co(NH3)63+, although highly localized, is free to rotate to hydrogen bond in several ways to the O4 atoms of the uracil bases and to N7 and O6 of the guanine bases. Negative and small NOE cross-peaks to other protons in the sequence reveal a non-specific or delocalized interaction, characterized by a high mobility of the cobalt ion. Mn2+titrations of P5 show specific broadening of protons of the G.U base-pairs that form the metal ion binding site, in agreement with the NOE data from Co(NH3)63+. Binding constants for the interaction of Co(NH3)63+and of Mg2+to P5 were determined by monitoring imino proton chemical shifts during titration of the RNA with the metal ions. Dissociation constants are on the order of 0.1 mM for Co(NH3)63+and 1 mM for Mg2+. Binding studies were done on mutants with sequences corresponding to the three orientations of tandem G.U base-pairs. The affinities of Co(NH3)63+and Mg2+for the tandem G.U base-pairs depend strongly on their sequences; the differences can be understood in terms of the different structures of the corresponding metal ion-RNA complexes. Substitution of G.C or A.U for G.U pairs also affected the binding, as expected. These structural and thermodynamic results provide systematic new information about major groove metal ion binding in RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号