首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Zelitch I 《Plant physiology》1990,93(4):1521-1524
Experiments are described further indicating that O2-resistant photosynthesis observed in a tobacco (Nicotiana tabacum) mutant with enhanced catalase activity is associated with decreased photorespiration under conditions of high photorespiration relative to net photosynthesis. The effects on net photosynthesis of (a) increasing O2 concentrations from 1% to 42% at low CO2 (250 microliters CO2 per liter), and (b) of increasing O2 concentrations from 21% to 42% at high CO2 (500 microliters CO2 per liter) were investigated in M6 progeny of mutant and wild-type leaf discs. The mutant displayed a progressive increase in net photosynthesis relative to wild type with increasing O2 and the faster rate at 42% O2 was completely reversed on returning to 21% O2. The photosynthetic rate by the mutant was similar to wild type in 21% and 42% O2 at 500 microliters CO2 per liter, and a faster rate by the mutant was restored on returning to 250 microliters CO2 per liter. The results are consistent with a lowered release of photorespiratory CO2 by the mutant because greater catalase activity inhibits the chemical decarboxylation of α-keto acids by peroxisomal H2O2. Higher catalase activity was observed in the tip and middle regions of expanding leaves than in the basal area. On successive selfing of mutant plants with enhanced catalase activity, the percent of plants with this phenotype increased from 60% in M4 progeny to 85% in M6 progeny. An increase was also observed in the percent of plants with especially high catalase activity (averaging 1.54 times wild type) on successive selfings suggesting that homozygosity for enhanced catalase activity was being approached.  相似文献   

2.
Zelitch I 《Plant physiology》1990,92(2):352-357
The increase in net photosynthesis in M4 progeny of an O2-resistant tobacco (Nicotiana tabacum) mutant relative to wild-type plants at 21 and 42% O2 has been confirmed and further investigated. Self-pollination of an M3 mutant produced M4 progeny segregating high catalase phenotypes (average 40% greater than wild type) at a frequency of about 60%. The high catalase phenotype cosegregated precisely with O2-resistant photosynthesis. About 25% of the F1 progeny of reciprocal crosses between the same M3 mutant and wild type had high catalase activity, whether the mutant was used as the maternal or paternal parent, indicating nuclear inheritance. In high-catalase mutants the activity of NADH-hydroxypyruvate reductase, another peroxisomal enzyme, was the same as wild type. The mutants released 15% less photorespiratory CO2 as a percent of net photosynthesis in CO2-free 21% O2 and 36% less in CO2-free 42% O2 compared with wild type. The mutant leaf tissue also released less 14CO2 per [1-14C]glycolate metabolized than wild type in normal air, consistent with less photorespiration in the mutant. The O2-resistant photosynthesis appears to be caused by a decrease in photorespiration especially under conditions of high O2 where the stoichiometry of CO2 release per glycolate metabolized is expected to be enhanced. The higher catalase activity in the mutant may decrease the nonenzymatic peroxidation of keto-acids such as hydroxypyruvate and glyoxylate by photorespiratory H2O2.  相似文献   

3.
Experiments were conducted with a tobacco (Nicotiana tabacum) mutant with 40 to 50% greater catalase activity than wild type that is associated with a novel form of O2-resistant photosynthesis. The apparent Km for H2O2 was the same in mutant and wild-type leaf extracts. Tobacco RNAs were hybridized with Nicotiana sylvestris catalase cDNA, and a threefold greater steady-state level of catalase mRNA was found in mutant leaves. Steady-state levels of ribulose-1,5-bisphosphate carboxylase small subunit mRNA were similar in mutant and wild type. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partially purified catalase showed that the protein concentration in the band corresponding to catalase was higher in the mutant than in the wild type. Separation of leaf catalase proteins by isoelectric focusing revealed the presence of five major bands and one minor band of activity. The distribution of the catalase activity among these forms was similar in mutant and wild type, although the total activity was higher in the mutant in all five major bands. The results indicate that the enhanced catalase activity in mutant leaves is caused by an increase in synthesis of catalase protein and that this trait is mediated at the nucleic acid level.  相似文献   

4.
Zelitch I 《Plant physiology》1989,90(4):1457-1464
Plants were obtained with novel O2-resistant photosynthetic characteristics. At low CO2 (250-350 μL CO2 L−1) and 30°C when O2 was increased from 1% to 21% to 42%, the ratio of net CO2 uptake in O2-resistant whole plants or leaf discs compared to wild type increased progressively, and this was not related to stomatal opening. Dihaploid plantlets regenerated from anther culture were initially screened and selected for O2-resistant growth in 42% O2/160 μL CO2 L−1 and 0.18% of the plantlets showed O2-resistant photosynthesis. About 30% of the progeny (6 of 19 plants) of the first selfing of a fertile plant derived from a resistant dihaploid plant had O2-resistant photosynthesis, and after a second selfing this increased to 50% (6 of 12 plants). In 21% O2 and low CO2, net photosynthesis of the resistant plants was about 15% greater on a leaf area basis than wild type. Net photosynthesis was compared in leaf discs at 30 and 38°C in 21% O2, and at the higher temperature O2-resistant plants showed still greater photosynthesis than wild type. The results suggest that the O2-resistant photosynthesis described here is associated with a decreased stoichiometry of CO2 release under conditions of rapid photorespiration. This view was supported by the finding that leaves of O2-resistant plants averaged 40% greater catalase activity than wild type.  相似文献   

5.
Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 microM as FeCl(3)) in the medium, whereas planktonic cultures required no addition of iron. However, iron-stimulated catalase activity in biofilms was still only about one-third that in planktonic cells. Oxygen effects on catalase activity were also investigated. Nitrate-respiring planktonic cultures produced approximately twice as much catalase activity as aerobic cultures grown in the presence of nitrate; the nitrate stimulation effect could also be demonstrated in biofilms. Cultures fermenting arginine had reduced catalase levels; however, catalase repression was also observed in aerobic cultures grown in the presence of arginine. It was concluded that iron availability, but not oxygen availability, is a major factor affecting catalase expression in biofilms.  相似文献   

6.
Catalase from bovine liver was lyophilized from an aqueous solution containing chitin-graft-poly(2-methyl-2-oxazoline) (3), which was synthesized by the reaction of 52% deacetylated chitin (1) with living poly(2-methyl-2-oxazoline) (2). The rate of consumption of H2O2 in chloroform catalyzed by the lyophilized catalase with 3 was enhanced more than 10 times that by catalase without 3. The dispersibility and solubility of lyophilized catalase with 3 in chloroform were improved in comparison with catalase itself.  相似文献   

7.
Hydrogen peroxide (H2O2)-resistant variants of the Chinese hamster ovary HA-1 line have been derived by culturing cells in progressively higher concentrations of H2O2 (greater than 200 days, in 50-800 microM H2O2). The H2O2-resistant phenotype has been stable for over 60 passages (240 days) following removal from the H2O2 stress. The resistant cells demonstrate both increased capacity to deplete exogenously added H2O2 from the growth medium and increased catalase activity. H2O2 resistance correlates well with catalase activity. An increase in chromosome number occurred in the cells adapted to 200-800 microM H2O2, but increases in aneuploidy and tetraploidy were not necessary for resistance. These results suggest that adaptation to chronic oxidative stress mediated by H2O2 in mammalian cells is accompanied by a stable heritable change in expression of catalase activity.  相似文献   

8.
9.
Transgenic tobacco deficient in either Cat1 (Cat1AS), Cat2 (Cat2AS), or both (CatGH) was generated through sense and antisense technology. Cat1AS, Cat2AS, and CatGH plants showed no visible phenotype when grown at low light (100 µmol m−2 sec−1. Under these conditions, deficiency in Cat1 and/or Cat2 did not lead to constitutive pathogenesis-related (PR-1) expression and did not potentiate PR-1 induction by exogenous salicylic acid. This demonstrates that catalase suppression per se is not a sufficient signal for PR-1 induction. In Cat1-deficient plants exposed to higher light intensities (250–1000 µmol m−2 sec−1), PR-1 expression was induced without pathogenic challenge and multiplication of Pseudomonas syringae pv. syringae was repressed. Yet, it is unlikely that Cat1 deficiency is mimicking the mode of action of salicylic acid in tobacco, because, concurrent with PR-1 induction, Cat1 deficiency at high light provoked severe leaf damage, characterized by white necrotic lesions. Taken together, these results do not support the model that catalase inactivation is the key route by which salicylic acid induces PR defense responses in healthy tissue. However, because catalase deficiency is potentially lethal to leaves, catalase inactivation by salicylic acid could be of importance in the establishment of hypersensitive responses.  相似文献   

10.
Chromate-resistant Chlorella spp. isolated from effluents of electroplating industry could grow in the presence of 30 μM K2Cr2O7. Since photosynthesis is sensitive to oxidative stress, chromate toxicity to photosynthesis was examined in this algal isolate. Chromate [Cr(VI)] up to 100 μM was found to stimulate photosynthesis, while 90% inhibition was found, when the cells were incubated with 1 mM Cr(VI) for 4 h. Photosystem (PS) II was inhibited by 80% and PSI by 40% after such Cr(VI) treatment. Thermoluminescence studies on cells treated with 1 mM Cr(VI) for 4 h showed that S2QA ? recombination peak (Q) was shifted to higher temperature, whereas S2/S3QB ? recombination peak (B) was shifted to lower temperature. These shifts indicated alga stress response in order to overcome an excitation stress resulting from the inhibition of photosynthesis by Cr(VI). The nontreated Chlorella cells kept in the dark showed periodicity of four for the Q peak (4–8°C) and B peak (34–38°C) after exposure to series of single, turnover, saturating flashes. This periodicity was lost in Cr(VI)-treated cells. Higher concentrations of Cr(VI) inhibited mainly the electron flow in the electron transport chain, inactivated oxygen evolving complex, and affected also Calvin cycle enzymes in the Cr(VI)-resistant isolates of Chlorella.  相似文献   

11.
12.
13.
The catalase activity of unwashed preparations containing intact spinach (Spinacia oleracea L.) chloroplasts is inhibited both by cyanide and by azide at concentrations which also cause inhibition of photosynthetic CO2- dependent O2 evolution.

Aminotriazole can also be used to inhibit this contaminant catalase, and in this case inhibition of catalase can be achieved at aminotriazole concentrations which have little effect on the rate of photosynthetic CO2 fixation. Aminotriazole may be used as a specific inhibitor of catalase in order to demonstrate inhibition of photosynthesis by added H2O2.

It is therefore concluded that inhibition of photosynthesis by cyanide and azide does not necessarily result from inhibition of catalase in the chloroplast preparation, and that intact chloroplasts do not produce inhibitory concentrations of H2O2 under the best experimental conditions for CO2 fixation.

  相似文献   

14.
Profiles of N(2) fixation, O(2) production (gross photosynthesis), O(2) concentration, chlorophyll a concentration, and photon fluence rates were measured with 50-mum resolution in colonies of the heterocyst-forming cyanobacterium Nostoc parmelioides. Microelectrode measurements were made after 20 h of incubation under N(2) gas. Colonies were frozen, and 50-mum sections were prepared by using a freezing microtome and analyzed for N enrichment and chlorophyll a concentration. Colonies exhibited steep spatial gradients in rates of gross photosynthesis, O(2) concentration, and irradiance, with the highest values generally occurring at the surface. O(2) concentration, photosynthesis, and irradiance all showed positive correlations, but chlorophyll a concentrations varied independently of photosynthesis and irradiance. Forty-four percent of the variation in N incorporation was explained by gross photosynthesis (a positive correlation) when incorporation of N was expressed per unit of biomass (chlorophyll a).  相似文献   

15.
16.
Effect of exogenous H(2)O(2) and catalase was tested in liquid cultures of the deoxynivalenol and 15-acetyldeoxynivalenol-producing fungus Fusarium graminearum. Accordingly to previous results, H(2)O(2) supplementation of the culture medium leads to increased toxin production. This study indicates that this event seems to be linked to a general up regulation of genes involved in the deoxynivalenol and 15-acetyldeoxynivalenol biosynthesis pathway, commonly named Tri genes. In catalase-treated cultures, toxin accumulation is reduced, and Tri genes expression is significantly down regulated. Furthermore, kinetics of expression of several Tri genes is proposed in relation to toxin accumulation. Biological meanings of these findings are discussed.  相似文献   

17.
Lipopolysaccharide (LPS)-resistant mutants which did not respond to LPS were isolated from a macrophage-like mouse cell line, J774.1. Unlike the parental J774.1 cells, these mutants grew even in LPS added medium as well as in normal growth medium without any morphological changes. Assay of 125I-LPS binding to the cell monolayers revealed that one of these LPS-resistant mutants (LR-9) was strikingly defective in LPS-binding activity. Scatchard plot showed that LR-9 cells lacked the high affinity binding sites which were present in J774.1. The high affinity binding was inhibited by addition of excess unlabeled LPS, lipid A, lipid IVA (tetraacyl-beta(1'-6)-linked D-glucosamine disaccharide-1,4'-bisphosphate), and lipid X (2,3-diacylglucosamine 1-phosphate) and sensitive to proteinase K. LPS enhanced O2- generation and the release of arachidonic acid in J774.1 cells but not in LR-9 cells. Other stimulants such as zymosan and 12-O-tetradecanoylphorbol 13-acetate, however, induced the release of arachidonic acid in LR-9 cells as well as in J774.1 cells. LPS-photocross-linked assay allowed the identification of 65- and 55-kDa LPS-binding proteins in the membrane fraction of J774.1 cells. Both of the bands were not detectable in that of LR-9 cells and disappeared by competing with unlabeled LPS or lipid X. These results show that one or both of the two LPS-binding proteins might relate to the specific membrane receptor for LPS.  相似文献   

18.
Various forms of stress result in decreased O2 permeability or decreased capacity to consume O2 in legume root nodules. These changes alter the nodule interior O2 concentration (Oi). To determine the relationship between Oi and nitrogenase activity in attached soybean (Glycine max) nodules, we controlled Oi by varying external pO2 while monitoring internal H2 concentration (Hi) with microelectrodes. Oi was monitored by noninvasive leghemoglobin spectrophotometry (nodule oximetry). After each step-change in Oi, Hi approached a new steady state, with a time constant averaging 23 s. The rate of H2 production by nitrogenase was calculated as the product of Hi, nodule surface area, and nodule H2 permeability. H2 permeability was estimated from O2 permeability (measured by nodule oximetry) by assuming diffusion through air-filled pores; support for this assumption is presented. Oi was nearly optimal for nitrogenase activity (H2 production) between 15 and 150 nm. A 1- to 2-min exposure to elevated external pO2 (40-100 kPa) reduced Hi to zero, but nitrogenase activity recovered quickly under air, often in <20 min. This rapid recovery contrasts with previous reports of much slower recovery with longer exposures to elevated pO2. The mechanism of nitrogenase inhibition may differ between brief and prolonged O2 exposures.  相似文献   

19.
Factors affecting the rhythmic activity of Blennius pholis L. (Teleostei)   总被引:1,自引:0,他引:1  
  相似文献   

20.
Tobacco plants (Nicotiana tabacum L.) transformed with an inverted cDNA encoding ribulose 5-phosphate kinase (phosphoribulokinase,PRK; EC 2.7.1.19) were employed to study the in vivo relationship between photosynthetic electron transport and the partitioning of electron transport products to major carbon metabolism sinks under conditions of elevated ATP concentrations and limited ribulose 1,5-bisphosphate (RuBP) regeneration. Simultaneous measurements of room temperature chlorophyll fluorescence and CO2 gas exchange were conducted on intact leaves. Under ambient CO2 concentrations and light intensities above those at which the plants were grown, transformants with only 5% of PRK activity showed down-regulation of PS II activity and electron transport in response to a decrease in net carbon assimilation when compared to wild-type. This was manifested as a decline in the efficiency of PS II electron transport (PS II), an increase in dissipation of excess absorbed light in the antennae of PS II and a decline in: total linear electron transport (J1), electron transport dedicated to carbon assimilation (JA) and electron transport allocated to photorespiration (JL). The transformants showed no alteration in the Rubisco specificity factor measured in vitro and calculated in vivo but had a relatively smaller ratio of RuBP oxygenation to carboxylation rates (vo/vc), due to a higher CO2 concentration at the carboxylation site (Cc). The relationship between PS II and CO 2was similar in transformants and wild-type under photorespiratory conditions demonstrating no change in the intrinsic relationship between PS II function and carbon assimilation, however, a novel result of this study is that this similar relationship occurred at different values of quantum flux, J1, JA, JL and vo/vc in the transformant. For both wild-type and transformants, an assessment was made of the possible presence of a third major sink for electron transport products, beside RuBP oxygenation and carboxylation, the data provided no evidence for such a sink.Abbreviations Cc CO2 concentration at the site of carboxylation - Ci intercellular CO2 concentration - gm mesophyll conductance to CO2 - J1 total linear electron flow - JA linear electron flow allocated to CO2 assimilation - Jc linear electron flow supporting carbon reduction and oxidation cycles - JL linear electron flow allocated to photorespiration (RuBP oxygenation and fixation of released photorespiratory CO2) - PRK phosphoribulokinase - qP, qN coefficients for photochemical and non-photochemical quenching of fluorescence respectively - Rubisco ribulose 1,5-bisphosphate carboxylase-oxygenase - S Rubisco specificity to CO2/O2 - vc, vo rates of RuBP carboxylation and RuBP oxygenation, respectively - CO 2 relative quantum yield of CO2 assimilation - C maximum CO 2 under non-photorespiratory conditions - exc the efficiency of excitation capture by open PS II centres - PS II relative quantum yield of PS II electron transport  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号