首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The European large subunit ribosomal RNA database   总被引:4,自引:1,他引:4  
The European Large Subunit (LSU) Ribosomal RNA (rRNA) database is accessible via the rRNA WWW Server at URL http://rrna.uia.ac.be/lsu/. It is a curated database that compiles complete or nearly complete LSU rRNA sequences in aligned form, and also incorporates secondary structure information for each sequence. Taxonomic information, literature references and other information about the sequences are also available, and can be searched via the WWW interface.  相似文献   

2.
Evolutionary trees were constructed, by distance methods, from an alignment of 225 complete large subunit (LSU) rRNA sequences, representing Eucarya, Archaea, Bacteria, plastids, and mitochondria. A comparison was made with trees based on sets of small subunit (SSU) rRNA sequences. Trees constructed on the set of 172 species and organelles for which the sequences of both molecules are known had a very similar topology, at least with respect to the divergence order of large taxa such as the eukaryotic kingdoms and the bacterial divisions. However, since there are more than ten times as many SSU as LSU rRNA sequences, it is possible to select many SSU rRNA sequence sets of equivalent size but different species composition. The topologies of these trees showed considerable differences according to the particular species set selected.The effect of the dataset and of different distance correction methods on tree topology was tested for both LSU and SSU rRNA by repetitive random sampling of a single species from each large taxon. The impact of the species set on the topology of the resulting consensus trees is much lower using LSU than using SSU rRNA. This might imply that LSU rRNA is a better molecule for studying wide-range relationships. The mitochondria behave clearly as a monophyletic group, clustering with the Proteobacteria. Gram-positive bacteria appear as two distinct groups, which are found clustered together in very few cases. Archaea behave as if monophyletic in most cases, but with a low confidence.Abbreviations LSU rRNA large subunit ribosomal RNA - SSU rRNA small subunit ribosomal RNA - JC Jukes and Cantor - JN Jin and Nei Correspondence to: R. De Wachter  相似文献   

3.
4.
Database on the structure of large ribosomal subunit RNA.   总被引:3,自引:0,他引:3       下载免费PDF全文
Our database on large ribosomal subunit RNA contained 334 sequences in July, 1995. All sequences in the database are aligned, taking into account secondary structure. The aligned sequences are provided, together with incorporated secondary structure information, in several computer-readable formats. These data can easily be obtained through the World Wide Web. The files in the database are also available via anonymous ftp.  相似文献   

5.
Database on the structure of large subunit ribosomal RNA.   总被引:7,自引:0,他引:7       下载免费PDF全文
The Antwerp database on large subunit ribosomal RNA now contains 607 complete or nearly complete aligned sequences. The alignment incorporates secondary structure information for each sequence. Other information about the sequences, such as literature references, accession numbers and taxonomic information is also available. Information from the database can be downloaded or searched on the rRNA WWW Server at URL http://rrna.uia.ac.be/  相似文献   

6.
Database on the structure of large ribosomal subunit RNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
The rRNA WWW Server at URL http://rrna.uia.ac.be/ now provides a database of 496 large subunit ribosomal RNA sequences. All these sequences are aligned, incorporate secondary structure information, and can be obtained in a number of formats. Other information about the sequences, such as literature references, accession numbers and taxonomic information is also available and searchable. If necessary, the data on the server can also be obtained by anonymous ftp.  相似文献   

7.
Database on the structure of large ribosomal subunit RNA.   总被引:5,自引:0,他引:5       下载免费PDF全文
A database on large ribosomal subunit RNA is made available. It contains 258 sequences. It provides sequence, alignment and secondary structure information in computer-readable formats. Files can be obtained using ftp.  相似文献   

8.
The latest release of the large ribosomal subunit RNA database contains 429 sequences. All these sequences are aligned, and incorporate secondary structure information. The rRNA WWW Server at URL http://rrna.uia.ac.be/ provides researchers with an easily accessible resource to obtain the data in this database in a number of computer-readable formats. A new query interface has been added to the server. If necessary, the data can also be obtained by anonymous ftp from the same site.  相似文献   

9.
1. Evidence is presented for the occurrence of a very stable RNA core (S4-RNA) in "native" 16S RNA that is also present in the 30S subunit of Escherichia coli. A model giving the approximate location of this RNA core in the 30S subunit is presented. 2. It is proposed (a) that this S4-RNA acts as a nucleus for the assembly of the 30S subunit, and (b) that a small class of "linkage" proteins, including S4, further facilitate the assembly of the proteins to the RNA, thereby explaining some of the "cooperative" effects that are observed during in vitro assembly. 3. Evidence for the importance of the RNA core in the functioning of the ribosome is discussed.  相似文献   

10.
The ribosome is a highly dynamic ribonucleoprotein machine. During assembly and during translation the ribosomal RNAs must routinely be prevented from falling into kinetic folding traps. Stable occupation of these trapped states may be prevented by proteins with RNA chaperone activity. Here, ribosomal proteins from the large (50S) ribosome subunit of Escherichia coli were tested for RNA chaperone activity in an in vitro trans splicing assay. Nearly a third of the 34 large ribosomal subunit proteins displayed RNA chaperone activity. We discuss a possible role of this function during ribosome assembly and during translation.  相似文献   

11.
Summary The sequence of the large subunit ribosomal RNA (LsuRNA) gene of the dinoflagellateProrocentrum micans has been determined. The inferred rRNA sequence [3408 nucleotides (nt)] is presented in its most probable secondary structure based on compensatory mutations, energy, and conservation criteria. No introns have been found but a hidden break is present in the second variable domain, 690 nt from the 5 end, as judged by agarose gel electrophoresis and primer extension experiments.Prorocentrum micans LsuRNA length and G+C content are close to those of ciliates and yeast. The conserved portions of the molecule (1900 nt) have been aligned with corresponding sequences from various eukaryotes, including five protista, one metaphyta, and three metazoa. An extensive phylogenetic study was performed, comparing two phenetic methods (neighbor joining on difference matrix, and Fitch and Margoliash on Knuc values matrix) and one cladistic (parsimony). The three methods led to similar tree topologies, except for the emergence of yeast that groups with ciliates and dinoflagellates when phenetic methods are used, but emerges later in the most parsimonious tree. This discrepancy was checked by statistical analyses on reduced trees (limited to four species) inferred using parsimony and evolutionary parsimony methods. The data support the phenetic tree topologies and a close relationship between dinoflagellates, ciliates, and yeast.  相似文献   

12.
Macrolides are a group of diverse class of naturally occurring and synthetic antibiotics made of macrocyclic-lactone ring carrying one or more sugar moieties linked to various atoms of the lactone ring. These macrolides selectively bind to a single high affinity site on the prokaryotic 50S ribosomal subunit, making them highly effective towards a wide range of bacterial pathogens. The understanding of binding between macrolides and ribosome serves a good basis in elucidating how they work at the molecular level and these findings would be important in rational drug design. Here, we report refinement of reconstructed PDB structure of erythromycin-ribosome system using molecular dynamics (MD) simulation. Interesting findings were observed in this refinement stage that could improve the understanding of the binding of erythromycin A (ERYA) onto the 50S subunit. The results showed ERYA was highly hydrated and water molecules were found to be important in bridging hydrogen bond at the binding pocket during the simulation time. ERYA binding to ribosome was also strengthened by hydrogen bond network and hydrophobic interactions between the antibiotic and the ribosome. Our MD simulation also demonstrated direct interaction of ERYA with Domains II, V and with C1773 (U1782EC), a residue in Domain IV that has yet been described of its role in ERYA binding. It is hoped that this refinement will serve as a starting model for a further enhancement of our understanding towards the binding of ERYA to ribosome.  相似文献   

13.
14.
15.
Analysis of the available crystal structures of the ribosome and of its subunits has revealed a new RNA motif that we call G-ribo. The motif consists of two double helices positioned side-by-side and connected by an unpaired region. The juxtaposition of the two helices is kept by a complex system of tertiary interactions spread over several layers of stacked nucleotides. In the center of this arrangement, the ribose of a nucleotide from one helix is specifically packed with the ribose and the minor-groove edge of a guanosine from the other helix. In total, we found eight G-ribo motifs in both ribosomal subunits. The location of these motifs suggests that at least some of them play an important role in the formation of the ribosome structure and/or in its function.  相似文献   

16.
The phylogenetic position of the phylum Platyhelminthes has been re-evaluated in the past decade by analysis of diverse molecular datasets. The consensus is that the Rhabditophora + Catenulida, which includes most of the flatworm taxa, are not primitively simple basal bilaterians but are related to coelomate phyla such as molluscs. The status of two other groups of acoelomate worms, Acoela and Nemertodermatida, is less clear. Although many characteristics unite these two groups, initial molecular phylogenetic studies placed the Nemertodermatida within the Rhabditophora, but placed the Acoela at the base of the Bilateria, distant from other flatworms. This contradiction resulted in scepticism about the basal position of acoels and led to calls for further data. We have sequenced large subunit ribosomal RNA genes from 13 rhabditophorans + catenulids, three acoels and one nemertodermatid, tripling the available data. Our analyses strongly support a basal position of both acoels and nemertodermatids. Alternative hypotheses are significantly less well supported by the data. We conclude that the Nemertodermatida and Acoela are basal bilaterians and, owing to their unique body plan and embryogenesis, should be recognized as a separate phylum, the Acoelomorpha.  相似文献   

17.
18.
The molecular weights and the integrity of the two major components of ribosomal RNA from a wide variety of eukaryotic species, from protozoa to man, has been investigated by polyacrylamide gel electrophoresis under fully denaturing conditions. The results show that the s-rRNA is largely heterogeneous, ranging in size, from 0.65 X 10(6) to 0.96 X 10(6) dalton. The l-rRNA ranges in size from a minimum mol wt of 1.28 X 10(6) to a maximum weight of 1.60--1.66 X 10(6) (of warm-blooded vertebrates, Cephalopoda and Diptera); several intermediate values have been found in lower organisms and Protozoa. The s-rRNA is a truly continous, uninterrupted polynucleotide chain in all groups of organisms (protozoans, plants, fungi and animals). The larger rRNA is a continous un-nicked chain in all of the deuterostomian animals, plants and fungi. However, the l-rRNA of all the protostomian animals and the protozoa is an aggregate molecule consisting of two subunits held together by limited regions of hydrogen bounding; in these organisms the size of the s-rRNA is generally identical to that of the larger fragment of the l-rRNA. Analysis of the molecular weights of the subunits of the l-rRNA in the protostomians and the protozoa suggests that the l-rRNA contains one short stretch, prone to nucleolytic attack, dividing the RNA chain into a molecularly conserved portion (0.65 to 0.72 X 10(6) dalton) and a variable portion (0.65 to 0.96 X 10(6) dalton).  相似文献   

19.
Both monovalent cations and magnesium ions are well known to be essential for the folding and stability of large RNA molecules that form complex and compact structures. In the atomic structure of the large ribosomal subunit from Haloarcula marismortui, we have identified 116 magnesium ions and 88 monovalent cations bound principally to rRNA. Although the rRNA structures to which these metal ions bind are highly idiosyncratic, a few common principles have emerged from the identities of the specific functional groups that coordinate them. The nonbridging oxygen of a phosphate group is the most common inner shell ligand of Mg++, and Mg++ ions having one or two such inner shell ligands are very common. Nonbridging phosphate oxygens and the heteroatoms of nucleotide bases are common outer shell ligands for Mg++ ions. Monovalent cations usually interact with nucleotide bases and protein groups, although some interactions with nonbridging phosphate oxygens are found. The most common monovalent cation binding site is the major groove side of G-U wobble pairs. Both divalent and monovalent cations stabilize the tertiary structure of 23S rRNA by mediating interactions between its structural domains. Bound metal ions are particularly abundant in the region surrounding the peptidyl transferase center, where stabilizing cationic tails of ribosomal proteins are notably absent. This may point to the importance of metal ions for the stabilization of specific RNA structures in the evolutionary period prior to the appearance of proteins, and hence many of these metal ion binding sites may be conserved across all phylogenetic kingdoms.  相似文献   

20.
In the ciliated protozoan, Tetrahymena pyriformis, the mitochondrial large subunit ribosomal RNA (LSU rRNA) is discontinuous, consisting of two discrete RNA species: a 280-nucleotide LSU alpha (constituting the 5'-portion) and a 2315-nucleotide LSU beta (corresponding to the remaining 3'-portion of this rRNA). The T. pyriformis mitochondrial genome contains two copies of the LSU alpha.beta gene complex, and we have previously provided evidence that both copies are transcribed (Heinonen, T. Y. K., Schnare, M. N., Young, P. G., and Gray, M. W. (1987) J. Biol. Chem. 262, 2879-2887). We now report the complete sequences of the two copies of the LSU alpha.beta gene complex. These are not identical, but differ at 5 out of the 2595 positions by single nucleotide substitutions in one sequence relative to the other. In the secondary structure model we propose here, two of these differences are located in base-paired regions of the LSU rRNA; however, they do not interrupt the complementary interactions in these helices. The other three differences occur in single-stranded regions of the secondary structure. The base substitutions documented here are not localized to those regions of LSU rRNA that are the most highly conserved in global phylogenetic comparisons, and therefore it seems unlikely that they are of fundamental functional significance. Whether they might exert more subtle effects on ribosome function remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号