首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
KISS-1/GPR54基因及其在生殖中的作用   总被引:3,自引:0,他引:3  
冯涛  储明星  张英杰 《遗传》2008,30(4):419-425
KISS-1及其受体GPR54基因对青春期的正常启动具有重要作用。青春期开始前后, 动物下丘脑中KISS-1和GPR54 mRNA水平很高, Kisspeptins(KISS-1基因产物)通过激活GPR54增加促性腺激素的释放, KISS-1基因的表达受性腺类固醇激素的调控。GPR54基因突变可以导致人和鼠的特发性促性腺激素分泌不足性腺机能减退症和促性腺激素依赖性性早熟。文章还介绍了KISS-1、GPR54基因的结构、表达、多态性以及和其它生殖调控因子之间的相互关系。  相似文献   

2.
GPR54 is a G-protein-coupled receptor that displays a high percentage of identity in the transmembrane domains with the galanin receptors. The ligand for GPR54 has been identified as a peptide derived from the KiSS-1 gene. KiSS-1 has been shown to have anti-metastatic effects, suggesting that KiSS-1 or its receptor represents a potential therapeutic target. To further our understanding of the physiological function of this receptor, we have generated a mutant mouse line with a targeted disruption of the GPR54 receptor (GPR54 -/-). The analysis of the GPR54 mutant mice revealed developmental abnormalities of both male and female genitalia and histopathological changes in tissues which normally contain sexually dimorphic features. These data suggest a role for GPR54/KiSS-1 in normal sexual development, and indicate that study of the GPR54 mutant mice may provide valuable insights into human reproductive syndromes.  相似文献   

3.
4.
哺乳动物的生殖活动受到神经内分泌系统的精确调控。近年来的研究表明,KISS-1基因的表达产物Kisspeptins及其G蛋白偶联受体(G protein coupled receptor 54,GPR54)在这一调控网络中发挥着重要作用,与哺乳动物青春期启动、发情排卵及季节性繁殖等过程密切相关。该文就近年来Kisspeptins/GPR54系统对哺乳动物生殖活动调控的研究进展进行简述。  相似文献   

5.
Arai AC 《Peptides》2009,30(1):16-25
The granule cells of the dentate gyrus form the input stage of the hippocampal trisynaptic circuit and their function is strongly influenced by peptidergic systems. GPR54 is highly and discretely expressed in these cells. We have found that activation of GPR54 with kisspeptin-10 causes a rapid and large increase in the amplitude of excitatory synaptic responses in granule cells, without changing membrane properties. The effect was suppressed by the G-protein inhibitor GDP-beta-S and the calcium chelator BAPTA, and analysis of miniature EPSCs revealed an increase in mean amplitude but not event frequency, indicating that GPR54 and the mechanisms for enhancing EPSCs are postsynaptic, possibly involving changes in AMPA receptor number or conductance. The kisspeptin-induced synaptic potentiation was abolished by inhibitors of ERK1/2, tyrosine kinase, and CaMKII. RT-PCR experiments showed that KiSS-1 is expressed in the dentate gyrus. KiSS-1 mRNA was significantly increased by seizure activity in rats and when neuronal activity in organotypic hippocampal slice cultures was enhanced by kainate or picrotoxin, while mRNA for GPR54 remained essentially unchanged. These results suggest that kisspeptin may be locally synthesized and act as an autocrine factor. In separate experiments, hippocampal KiSS-1 mRNA in male rats was increased after gonadectomy. In summary, kisspeptin is a novel endogenous factor which is dynamically regulated by neuronal activity and which, in marked distinction from other neuropeptides, increases synaptic transmission in dentate granule cells through signaling cascades possibly linked to the MAP kinase system. This novel peptide system may play a role in cognition and in the pathogenesis of epilepsy.  相似文献   

6.
7.
本研究旨在探讨Kiss1和GPR54基因多态性与多囊卵巢综合征的相关性。利用超声检查卵巢体积、血清睾酮、游离雄激素指数情况;临床评估患者身高(cm)和体重(kg)、BMI、静息血压、痤疮和黑棘皮病的分布;ELISA酶联免疫法检测血清中的kisspeptin和睾酮水平,使用Next generation sequencing方法(LGC group, Germany)对基因(Kiss1, GPR54)进行测序。结果显示,PCOS患者比对照组女性具有更高的BMI和mFG评分,PCOS患者血清Kisspeptin和睾酮浓度显著提高,且LH浓度也显著高于对照组(p<0.05)。GPR54和Kiss1 2个基因在患者体内存在多态性;测序分析结果显示GPR54基因存在的2个新的SNP位点(chr19:918686, A→G和chr19:918735, A→G),这2个新的多态性位于内含子区域(内含子2),Kiss1基因也存在两个SNP,位于非翻译变体5的末端(rs5780218)和外显子3 (rs4889),即GPR54基因存在A→G多态性,Kiss1基因为CTT→CT/G→C多态性,且相关性关联分析结果表明,GPR54基因型多态性(Chr19:918735)与PCOS风险增加相关(p<0.05);而Kiss1 SNP的基因型与PCOS风险之间没有关联。此外,PCOS与GPR54和Kiss1基因的单倍型没有显著关联。本研究推论对PCOS发生风险的遗传影响可能不仅是通过直接改变Kiss1/GPR54相互作用,而且还可能通过改变个体与环境因素的相互作用。  相似文献   

8.
KISS-1 and GPR54 were regarded as key regulators for the puberty onset and fundamental gatekeepers of sexual maturation in mammals. To explore the possible association between variations in KISS-1 and GPR54 with sexual precocity, mutation screening of exon 1 of KISS-1 and exon 1, exon 3, and partial exon 5 of GPR54 was performed in a sexual precocious breed (Jining Grey goats) and sexual late-maturing breeds (Inner Mongolia Cashmere, Angora, and Boer goats) by PCR-SSCP. The results showed that five novel mutations were identified in exon 1 and partial exon 5 of GPR54 including C96 T, T173C, G176A, G825A, and C981 T. The Jining Grey goats with genotype BB or AB had 1.07 (P < 0.05) or 0.40 (P < 0.05) kids more than those with AA. The Jining Grey goats with genotype DD or CD had 1.80 (P < 0.05) or 0.55 (P < 0.05) kids more than CC, respectively. The present study preliminarily showed an association between alleles B and D of GPR54 with high litter size and sexual precocity in Jining Grey goats.  相似文献   

9.
KiSS-1 and GPR54 at the pituitary level: overview and recent insights   总被引:1,自引:0,他引:1  
Since the stimulatory effect of kisspeptin on gonadotropin secretion is blocked by a GnRH antagonist, it has been suggested that the effect of kisspeptin is manifest exclusively at the level of hypothalamic GnRH secretion. However, kisspeptins are present in ovine hypophysial portal blood suggesting that the pituitary gland may be a target of kisspeptin. Dual fluorescence labeling with a specific mouse monoclonal antibody against LHbeta demonstrates that KiSS-1 and GPR54 are expressed by the gonadotrophs. Different paradigms were designed in animals and in humans in vivo to elucidate its role. However, in vitro studies assessing the direct stimulatory effects of kisspeptins on gonadotropin secretion in the pituitary have given conflicting results, depending on the hormonal (GnRH and/or estradiol) environment of the cells. Kisspeptins alone seem unable to induce the LH surge. It is therefore likely that kisspeptin has a synergic effect with GnRH and estradiol, at both hypothalamic and pituitary levels. However, kisspeptin may also play another role, distinct from that restricted to the reproductive axis. In this paper, we shall also review data on the potential role of kisspeptin in the control of other pituitary functions, e.g. somatotroph and lactotroph. Finally, kisspeptins could act as endocrine/autocrine/paracrine signals in modulating hormonal secretions of the anterior pituitary.  相似文献   

10.
Metastin (kisspeptin-54) is an endogenous ligand that modulates gonadotropin-releasing hormone (GnRH) secretion through the interaction with a G protein-coupled receptor (GPCR), GPR54. The short-chain C-terminal decapeptide amide, metastin (45-54) (kisspeptin-10), exerts the identical bioactivities to metastin, such as metastasis suppression of cancer cells and inhibition of trophoblast migration and invasion. In order to understand the structural requirement for GPR54 agonistic activity, structure-activity relationship (SAR) study on pentapeptide-based C-terminal metastin analogues was carried out. As a result, H-Amb-Nal(2)-Gly-Leu-Arg-Trp-NH2 34 was identified as a novel GPR54 agonist that possessed the most potent GPR54 agonistic activity reported so far.  相似文献   

11.
Kisspeptins are neuropeptides that induce the secretion of gonadotropin-releasing hormone via the activation of the cognate receptor, G-protein coupled receptor 54 (GPR54). The kisspeptin–GPR54 axis is associated with the onset of puberty and the maintenance of the reproductive system. In this study, several fluorescent probes have been designed and synthesized for rat GPR54 through the modification of the N-terminus of rat kisspeptins to allow for the visualization of the expression and localization of kisspeptin receptor(s) in living cells and native tissues. The tetramethylrhodamine (TMR) and rhodamine green (RG)-labeled kisspeptins exhibited good binding and agonistic activities towards GPR54, and the results of the application studies demonstrated that these fluorescent probes could be used effectively for the detection of GPR54 receptors in flow cytometry and confocal microscopy experiments.  相似文献   

12.
Chu M  Xiao C  Feng T  Fu Y  Cao G  Fang L  Di R  Tang Q  Huang D  Ma Y  Li K  Li N 《Molecular biology reports》2012,39(3):3291-3297
The KiSS-1 and GPR54 genes were studied as candidate genes for the prolificacy in sheep. Four pairs of primers were designed to detect single nucleotide polymorphisms of exon 1 of KiSS-1 gene and exon 1, exon 2 and partial exon 5 of GPR54 gene in high fecundity breeds (Small Tail Han and Hu sheep) and low fecundity breeds (Dorset, Texel and Corriedale sheep) by PCR-SSCP. Polymorphisms in exon 1 of KiSS-1 gene were detected in prolific Small Tail Han sheep (AA, AB and BB genotypes) and Hu sheep (AA and CC genotypes), no polymorphism was found in low fecundity sheep breeds (only AA genotype). Polymorphisms in exon 2 of GPR54 gene were detected in prolific Hu sheep (DD and EE genotypes) and no polymorphism was found in prolific Small Tail Han sheep and low fecundity sheep breeds (only DD genotype). No polymorphism was detected in exon 1 and partial exon 5 of GPR54 gene in five sheep breeds. The polymorphic genotypes were sequenced. While compared the BB genotype with the AA genotype, one nucleotide mutation (G1035A) was detected, which resulted in amino acid change, Val25Met. Five nucleotide mutations were detected from AA to CC genotype (C981T, C996T, T997C, C1034G, C1039T), and among them four caused amino acid changes, that is, Arg7Trp, Phe12Leu, Asn24Lys, Ala26Val. While compared the EE genotype with the DD genotype, two nucleotide mutations (T2360C, A2411C) were detected, which gave rise to amino acid changes, Met90Thr and Asp107Ala, respectively. Genotype frequencies of AA, BB and AB were 0.62, 0.05 and 0.33 in Small Tail Han sheep, respectively. The Small Tail Han sheep ewes with genotype BB or AB had 0.88 (P?<?0.05) or 0.51 (P?<?0.05) lambs more than those with genotype AA; the Small Tail Han sheep ewes with genotype BB had 0.37 (P?>?0.05) lambs more than those with genotype AB. These results preliminarily indicated that the KiSS-1 gene may have some association with prolificacy in sheep.  相似文献   

13.
Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness.  相似文献   

14.
KiSS1 was discovered as a metastasis suppressor gene and subsequently found to encode kisspeptins (KP), ligands for a G protein coupled receptor (GPCR), GPR54. This ligand-receptor pair was later shown to play a critical role in the neuro-endocrine regulation of puberty. The C-terminal cytoplasmic (C-ter) domain of GPR54 contains a segment rich in proline and arginine residues that corresponds to the primary structure of four overlapping SH3 binding motifs. Yeast two hybrid experiments identified the catalytic subunit of protein phosphatase 2A (PP2A-C) as an interacting protein. Pull-down experiments with GST fusion proteins containing the GPR54 C-ter confirmed binding to PP2A-C in cell lysates and these complexes contained phosphatase activity. The proline arginine rich segment is necessary for these interactions. The GPR54 C-ter bound directly to purified recombinant PP2A-C, indicating the GPR54 C-ter may form complexes involving the catalytic subunit of PP2A that regulate phosphorylation of critical signaling intermediates.  相似文献   

15.
Natural peptides displaying agonist activity on the orphan G protein-coupled receptor GPR54 were isolated from human placenta. These 54-, 14,- and 13-amino acid peptides, with a common RF-amide C terminus, derive from the product of KiSS-1, a metastasis suppressor gene for melanoma cells, and were therefore designated kisspeptins. They bound with low nanomolar affinities to rat and human GPR54 expressed in Chinese hamster ovary K1 cells and stimulated PIP(2) hydrolysis, Ca(2+) mobilization, arachidonic acid release, ERK1/2 and p38 MAP kinase phosphorylation, and stress fiber formation but inhibited cell proliferation. Human GPR54 was highly expressed in placenta, pituitary, pancreas, and spinal cord, suggesting a role in the regulation of endocrine function. Stimulation of oxytocin secretion after kisspeptin administration to rats confirmed this hypothesis.  相似文献   

16.
17.
18.
19.
Kisspeptins and GPR54--the new biology of the mammalian GnRH axis   总被引:1,自引:0,他引:1  
Recent genetic evidence in humans and from mouse knockouts has linked kisspeptin-driven GPR54 signaling to the regulation of GnRH release from the hypothalamus. These molecules appear to represent a previously unsuspected control point for GnRH secretion, with important implications for the biology and pathology of the sex steroid axis.  相似文献   

20.
Tomita K  Oishi S  Ohno H  Fujii N 《Biopolymers》2008,90(4):503-511
GPR54 is a Gq-protein coupled receptor involved in cancer metastasis and regulation of the endocrine system. GPR54 activation by endogenous ligands attenuates the mobility of carcinomas and stimulates the secretion of gonadotropin-releasing hormone. GPR54 agonists are, therefore, potential therapeutic candidates for cancer metastasis and hormonal diseases. Pentapeptide derivatives of kisspeptin C-terminus were identified as potent GPR54 agonists in our previous studies. In the present study, we investigated the structure-activity relationship of a variety of pentapeptides having various fluorine-substituted benzoyl groups at the N-terminus. Among these, a 4-fluorobenzoyl derivative was the most potent agonist. On the other hand, the derivatives having multiple fluoro-substituting groups showed less binding affinity. NMR analysis of these peptides and their N-terminal partial structures suggested that fluorine substituents affect the benzoyl conformation. o-Monofluorobenzoyl is likely to be in a coplanar conformation due to the intramolecular CF--HN hydrogen bonding between o-fluorine and amide hydrogen; the o,o-difluorobenzoyl moiety exists in a distorted conformation probably due to the steric hindrance and/or electrostatic repulsion between two o-fluorine atoms and carbonyl oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号