首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Very long-chain acyl-CoA dehydrogenase (VLCAD)-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD−/−) remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD−/− mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT) replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD−/− mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD−/− mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD−/− mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term.  相似文献   

2.
Patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency frequently present cardiomyopathy and heartbeat disorders. However, the underlying factors, which may be of cardiac or extra cardiac origins, remain to be elucidated. In this study, we tested for metabolic and functional alterations in the heart from 3- and 7-mo-old VLCAD null mice and their littermate counterparts, using validated experimental paradigms, namely, 1) ex vivo perfusion in working mode, with concomitant evaluation of myocardial contractility and metabolic fluxes using (13)C-labeled substrates under various conditions; as well as 2) in vivo targeted lipidomics, gene expression analysis as well as electrocardiogram monitoring by telemetry in mice fed various diets. Unexpectedly, when perfused ex vivo, working VLCAD null mouse hearts maintained values similar to those of the controls for functional parameters and for the contribution of exogenous palmitate to β-oxidation (energy production), even at high palmitate concentration (1 mM) and increased energy demand (with 1 μM epinephrine) or after fasting. However, in vivo, these hearts displayed a prolonged rate-corrected QT (QTc) interval under all conditions examined, as well as the following lipid alterations: 1) age- and condition-dependent accumulation of triglycerides, and 2) 20% lower docosahexaenoic acid (an omega-3 polyunsaturated fatty acid) in membrane phospholipids. The latter was independent of liver but affected by feeding a diet enriched in saturated fat (exacerbated) or fish oil (attenuated). Our finding of a longer QTc interval in VLCAD null mice appears to be most relevant given that such condition increases the risk of sudden cardiac death.  相似文献   

3.
In the livers of fasted rats, the activity of mitochondrial palmitoyl-CoA hydrolase was increased whereas the microsomal palmitoyl-CoA hydrolase activity decreased. Refeeding with a high-carbohydrate diet (glucose), the corresponding enzyme activities were decreased while refeeding with a high-fat diet (sheep tallow) increased the enzyme activities over the control values. The increased content of long-chain acyl-CoA and free CoASH under fasting and fat-refeeding was mainly attributed to the mitochondrial fraction with the remainder in the light mitochondrial fraction which contains peroxisomes. The results suggest a correlation of the compartmentation of the palmitoyl-CoA hydrolase and the content and compartmentation of the CoA derivatives in the liver under different nutritional states. The peroxisomal palmitoyl-CoA oxidase activity was increased by fasting. Fat-refeeding increased the activity even more; 1.8-fold as compared to the fasting animals. On the other hand, the activities of other peroxisomal enzymes which are not directly involved in the fatty acid metabolism such as urate oxidase were decreased to approximately the same extent by fasting. Re-feeding with glucose and fat further decreased the corresponding enzyme activity, particularly seen in the glucose-refed group.  相似文献   

4.
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD) is a clinically heterogeneous disorder of mitochondrial fatty acid β-oxidation usually identified through newborn screening. Genotype-phenotype correlations have been defined, but considerable clinical heterogeneity still exists. Symptoms are often induced by physiological stress such as fasting or intercurrent illness, setting it as an important example of environmental effects altering clinical course in an individual with a genetic disease. However, neither the cellular changes that predispose to this phenomenon nor the alterations it induces are well characterized. We examined the effects of fasting in a knockout mouse model to explore changes in global mitochondria protein profiles in liver and to investigate the physiologically relevant changes that lead to the clinical presentations. An isobaric tags for relative and absolute quantification (iTRAQ) labeling approach was employed to examine mitochondrial proteome changes in VLCAD deficient compared to wild type mice in the fed and fasted states. We identified numerous proteomic changes associated with the gene defect and fasting within relevant metabolic pathways. Few changes induced by fasting were shared between the VLCAD deficient and wild type mice, with more alterations found in the deficient mice on fasting. Particularly, fasting in the deficient mice could reverse the protective response in oxidative phosphorylation pathway seen in wild type animals. In addition, we found that changes in chaperone proteins including heat shock protein 60 (HSP60) and 10 (HSP10) during fasting differed between the two genotypes, highlighting the importance of these proteins in VLCAD deficiency. Finally, the effects on the liver proteome imposed by changes in fasted VLCAD deficient mice indicates that this environmental factor may be an inducer of both cellular and physiological changes.  相似文献   

5.
Age and diet-induced variations of phospholipid hydroperoxide glutathione peroxidase (PHGPx) activity and alpha-tocopherol concentration in the liver microsomal membrane were studied in male Wistar rats fed a semipurified diet either balanced in n-6 and n-3 polyunsaturated fatty acids (PUFA) (Control) or deprived of alpha-linolenic acid, i.e. n-3 PUFA (Deficient) over two generations. The animals were studied at the age of 6 months (adult) or 24 months (old). Both PHGPx activity and vitamin E level were significantly higher in 24-month old rats as compared to 6-month old rats. By contrast, the thiobarbituric acid reactive substances (TBARS) following stimulated in vitro peroxidation of membrane lipids were markedly lower (P < 0.01) with aging. The fatty acid composition of microsomal membrane phospholipids (PL) was also considerably modified by age. In particular, the levels of arachidonic acid and total n-6 PUFA were lower (P < 0.001) whereas n-3 PUFA levels were higher (P < 0.001) in most PL main classes. The alpha-linolenic acid deficiency markedly influenced these age-related changes. The higher PHGPx activity in the old rats as compared to the adult rats was only significant in those fed the control diet. In the 6-month old rats (but not in the 24-month old rats), the deficient diet led to a higher membrane vitamin E level and to lower TBARS production than the control diet. The results suggest that the nature of dietary PUFA may influence the age-related variations in this pair of membrane antioxidants and also in the fatty acid composition of microsomes.  相似文献   

6.
Very long chain acyl-CoA dehydrogenase (VLCAD) deficiency is one of the genetic defects of mitochondrial fatty acid beta-oxidation presenting in early infancy or childhood. If undiagnosed and untreated, VLCAD deficiency may be fatal, secondary to cardiac involvement. We assessed the effect of replacing part of the fat in the diet of a 2 ½-month-old male infant, who was diagnosed with VLCAD deficiency,with medium-chain triglyceride (MCT) oil and essential fats. The patient presented with vomiting, dehydration, and was found to have persistent elevation of liver function tests, hepatomegaly, pericardial and pleural effusion, right bundle branch block, and biventricular hypertrophy. Because of the cardiomyopathy, hepatomegaly, and an abnormal acylcarnitine profile and urine organic acids, he was suspected of having VLCAD deficiency. This was confirmed on acyl-coA dehydrogenase, very long chain (ACADVL) gene analysis. He was begun on an MCT oil-based formula with added essential fatty acids, uncooked cornstarch (around 1 year of age), and frequent feeds. By 7 months of age, cardiomyopathy had reversed and by 18 months of age, all cardiac medications were discontinued and hypotonia had improved such that physical therapy was no longer required. At 5 years of age, he is at the 50th percentile for height and weight along with normal development. Pediatricians need to be aware about the basic pathophysiology of the disease and the rationale behind its treatment as more patients are being diagnosed because of expansion of newborn screen. The use of MCT oil as a medical intervention for treatment of VLCAD deficiency remains controversial mostly because of lack of clear phenotype-genotype correlations, secondary to the genetic heterogeneity of the mutations. Our case demonstrated the medical necessity of MCT oil-based nutritional intervention and the need for the further research for the development of specific guidelines to improve the care of these patients.  相似文献   

7.
The aims of this study were designed to determine whether liraglutide, a long-acting glucagon-like peptide, could reverse the adverse effects of a diet high in fat that also contained trans-fat and high-fructose corn syrup (ALIOS diet). Specifically, we examined whether treatment with liraglutide could reduce hepatic insulin resistance and steatosis as well as improve cardiac function. Male C57BL/6J mice were pair fed or fed ad libitum either standard chow or the ALIOS diet. After 8 wk the mice were further subdivided and received daily injections of either liraglutide or saline for 4 wk. Hyperinsulinemic-euglycemic clamp studies were performed after 6 wk, revealing hepatic insulin resistance. Glucose tolerance and insulin resistance tests were performed at 8 and 12 wk prior to and following liraglutide treatment. Liver pathology, cardiac measurements, blood chemistry, and RNA and protein analyses were performed. Clamp studies revealed hepatic insulin resistance after 6 wk of ALIOS diet. Liraglutide reduced visceral adiposity and liver weight (P < 0.001). As expected, liraglutide improved glucose and insulin tolerance. Liraglutide improved hypertension (P < 0.05) and reduced cardiac hypertrophy. Surprisingly, liver from liraglutide-treated mice had significantly higher levels of fatty acid binding protein, acyl-CoA oxidase II, very long-chain acyl-CoA dehydrogenase, and microsomal triglyceride transfer protein. We conclude that liraglutide reduces the harmful effects of an ALIOS diet by improving insulin sensitivity and by reducing lipid accumulation in liver through multiple mechanisms including, transport, and increase β-oxidation.  相似文献   

8.
We investigated the effects of a saturated fat diet on mice lipid metabolism in resident peritoneal macrophages. Male C57BL/6 mice were weaned at 21 days of age and assigned to either the experimental diet, containing coconut oil (COCO diet), or the control diet, containing soybean oil as fat source. Fat content of each diet was 15% (w/w). Mice were fed for 6 weeks until sacrifice. In plasma of mice fed the COCO diet, the concentration of triglyceride, total cholesterol, HLD- and (LDL+VLDL)-cholesterol, and thiobarbituric acid-reactive substances (TBARS) increased, without changes in phospholipid concentration, compared with the controls. In macrophages of COCO-fed mice, the concentration of total (TC), free and esterified cholesterol, triglyceride, phospholipid (P) and TBARS increased, while the TC/P ratio did not change. The phospholipid compositions showed an increase of phosphatidylcholine and phosphatidylserine + phosphadytilinositol, a decrease of phosphatidylethanolamine, and no change in phosphatidylglycerol. (3)H(2)O incorporation into triglyceride and phospholipid fractions of macrophages increased, while its incorporation into free cholesterol decreased. Incorporation of [(3)H]cholesterol into macrophages of COCO-fed mice and the fraction of [(3)H]cholesterol ester increased. COCO diet produced an increase in myrystic, palmitic and palmitoleic acids proportion, a decrease in linoleic and arachidonic acids and no changes in stearic and oleic acids, compared with the control. Also, a higher relative percentage of saturated fatty acid and a decrease in unsaturation index (p <0.001) were observed in macrophages of COCO-fed mice. These results indicate that the COCO-diet, high in saturated fatty acids, alters the lipid metabolism and fatty acid composition of macrophages and produces a significant degree of oxidative stress.  相似文献   

9.

Background

Rapid body fat mobilization, obesity, and an inadequate supply of n-3 polyunsaturated fatty acids (PUFA) have been suggested to play roles in the etiology of fatty liver in the American mink (Neovison vison). This study examined the effects of feeding intensity and dietary fat source on fatty liver induced by fasting. In a multi-factorial design, 3 different fat sources (herring oil, rich in n-3 PUFA, soya oil, rich in n-6 PUFA, and canola oil, rich in n-9 monounsaturated fatty acids) were fed to mink at a low and high feeding intensity for 10 weeks, followed by an overnight or a 5-day fasting treatment to induce fatty liver.

Results

Fasting led to the development of fatty liver with increased severity in the mink fed at the high feeding intensity. The herring oil diet, high in long-chain n-3 PUFA, was found to decrease the severity of fatty liver in the mink at the high feeding intensity.

Conclusion

Preventing excessive weight gain and increasing dietary intake of n-3 long-chain PUFA may help prevent excessive lipid accumulation during prolonged periods of fasting or inappetence by promoting hepatic fatty acid oxidation.  相似文献   

10.
Plasma concentrations of free fatty acids are increased in metabolic syndrome, and the increased fatty acids may cause cellular damage via the induction of oxidative stress. The present study was designed to determine whether the increase in fatty acids can modify the free sulfhydryl group in position 34 of albumin (Cys34) and enhance the redox-cycling activity of the copper-albumin complex in high-fat diet-induced obese mice. The mice were fed with commercial normal diet or high-fat diet and water ad libitum for 3 months. The high-fat diet-fed mice developed obesity, hyperlipemia, and hyperglycemia. The plasma fatty acid/albumin ratio also significantly increased in high-fat diet-fed mice. The increased fatty acid/albumin ratio was associated with conformational changes in albumin and the oxidation of sulfhydryl groups. Moreover, an ascorbic acid radical, an index of redox-cycling activity of the copper-albumin complex, was detected only in the plasma from obese mice, whereas the plasma concentrations of ascorbic acid were not altered. Plasma thiobarbituric acid reactive substances were significantly increased in the high-fat diet group. These results indicate that the increased plasma fatty acids in the high-fat diet group resulted in the activated redox cycling of the copper-albumin complex and excessive lipid peroxidation.  相似文献   

11.
We have previously shown that medium-chain triglyceride (MCT) resulted in significantly less body fat mass than long-chain triglyceride (LCT) did in hypertriglyceridimic subjects. The possible mechanism for this was investigated by measuring and analyzing changes in the body fat, blood lipid profile, enzymatic level and activity of hormone-sensitive lipase (HSL) and its mRNA expression, and levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in white adipose tissue (WAT) of C57BL/6J mice fed for 16 weeks on an MCT or LCT diet. MCT induced lower body weight and body fat, and an improved blood lipid profile than LCT did. The enzymatic level and activity of HSL and its mRNA expression, and the levels of cAMP and PKA were significantly higher in WAT of mice fed with the MCT diet. No significant differences in the levels of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in WAT were apparent between the effects of MCT and LCT. It is concluded that lipolysis by the increased level and activity of HSL, which was induced by the activation of cAMP-dependent PKA in WAT, was partially responsible for the lower fat accumulation in C57BL/6J mice fed with MCT.  相似文献   

12.
Peroxisome proliferator-activated receptor alpha (PPARalpha), a key regulator of fatty acid oxidation, is essential for adaptation to fasting in rats and mice. However, physiological functions of PPARalpha in other species, including humans, are controversial. A group of PPARalpha ligands called peroxisome proliferators (PPs) causes peroxisome proliferation and hepatocarcinogenesis only in rats and mice. To elucidate the role of PPARalpha in adaptation to fasting in nonproliferating species, we compared gene expressions in pig liver from fasted and clofibric acid (a PP)-fed groups against a control diet-fed group. As in rats and mice, fasting induced genes involved with mitochondrial fatty acid oxidation and ketogenesis in pigs. Those genes were also induced by clofibric acid feeding, indicating that PPARalpha mediates the induction of these genes. In contrast to rats and mice, little or no induction of genes for peroxisomal or microsomal fatty acid oxidation was observed in clofibric acid-fed pigs. Histology showed no significant hyperplasia or hepatomegaly in the clofibric acid-fed pigs, whereas it showed a reduction of glycogen by clofibric acid, an effect of PPs also observed in rats. Copy number of PPARalpha mRNA was higher in pigs than in mice and rats, suggesting that peroxisomal proliferation and hyperresponse of several genes to PPs seen only in rats and mice are unrelated to the abundance of PPARalpha. In conclusion, PPARalpha is likely to play a central role in adaptation to fasting in pig liver as in rats and mice.  相似文献   

13.
Young growing rats, chicks and pigs were fed diets containing graded levels of 1,3-butanediol (BD). Replacement of up to 20% of the dietary carbohydrate energy with BD did not affect body weight gain or food efficiency in these species. Blood beta-hydroxybutyrate levels were markedly elevated when BD was added to the diet. Plasma triglyceride response varied with species. In the rat, plasma triglyceride levels were decreased when BD was added to a high-carbohydrate diet. Plasma triglyceride levels were increased when BD-containing diets were fed to pigs and unchanged when chicks consumed diets containing BD. The hepatic lactate:pyruvate ratio was increased in rats fed BD and decreased in chicks fed BD. Hepatic long-chain acyl CoA levels were increased in rats, but not in chicks, fed BD. Addition of BD to a high-carbohydrate diet markedly decreased the rate of fatty acid synthesis, as measured in vitro or in vivo, in rat liver but not in rat or pig adipose tissue. Hepatic fatty acid synthesis in the chick was not affected by replacement of up to 18% of the dietary carbohydrate with BD. We propose that the hepatic conversion of BD to beta-hydroxybutyrate in the rat shifts the cytoplasmic redox state, reduces the glycolytic rate, and reduces substrate availability for fatty acid synthesis. Further, the concomitant shift in the mitochondrial redox state allows long-chain acyl CoA levels to increase. The overall effect is a decrease in the rate of fatty acid synthesis in livers of rats fed BD.  相似文献   

14.
Key enzymes involved in oxidation and esterification of long-chain fatty acids were investigated in male rats fed different types and amounts of oil in their diet. A diet with 20% (w/w) fish oil, partially hydrogenated fish oil (PHFO) and partially hydrogenated soybean oil (PHSO) was shown to stimulate the mitochondrial and microsomal palmitoyl-CoA synthetase activity (EC 6.2.1.3) compared to soybean oil-fed animals after 1 week of feeding. Rapeseed oil had no effect. Partially hydrogenated oils in the diet resulted in significantly higher levels of mitochondrial glycerophosphate acyltransferase compared to unhydrogenated oils in the diet. Rats fed 20% (w/w) rapeseed oil had a decreased activity of this mitochondrial enzyme, whereas the microsomal glycerophosphate acyltransferase activity was stimulated to a comparable extent with 20% (w/w) rapeseed oil, fish oil or PHFO in the diet. Increasing the amount of PHFO (from 5 to 25% (w/w)) in the diet for 3 days led to increased mitochondrial and microsomal palmitoyl-CoA synthetase and microsomal glycerophosphate acyltransferase activities with 5% of this oil in the diet. The mitochondrial glycerophosphate acyltransferase was only marginally affected by increasing the oil dose. Administration of 20% (w/w) PHFO increased rapidly the mitochondrial and microsomal palmitoyl-CoA synthetase, carnitine palmitoyltransferase and microsomal glycerophosphate acyltransferase activities almost to their maximum value within 36 h. In contrast, the glycerophosphate acyltransferase and palmitoyl-CoA hydrolase (EC 3.1.2.2) activities of the mitochondrial fraction and the peroxisomal beta-oxidation reached their maximum activities after administration of the dietary oil for 6.5 days. This sequence of enzyme changes (a) is in accordance with the proposal that an increased cellular level of long-chain acyl-CoA species act as metabolic messages for induction of peroxisomal beta-oxidation and palmitoyl-CoA hydrolase, i.e., these enzymes are regulated by a substrate-induced mechanism, and (b) indicates that, with PHFO, a greater part of the activated fatty acids are directed from triacylglycerol esterification and hydrolysis towards oxidation in the mitochondria. It is also conceivable that the mitochondrial beta-oxidation is proceeding before the enhancement of peroxisomal beta-oxidation.  相似文献   

15.
A suckling piglet model was used to study nutritional and pharmacologic means of stimulating hepatic fatty acid beta-oxidation. Newborn pigs were fed milk diets containing either long- or medium-chain triglycerides (LCT or MCT). The long-chain control diet was supplemented further with clofibric acid (0.5%) or isoproterenol (40 ppm), and growth was monitored for 10-12 days. Clofibrate increased rates of hepatic peroxisomal and mitochondrial beta-oxidation of [1-(14)C]-palmitate by 60 and 186%, respectively. Furthermore, malonyl-CoA sensitive carnitine palmitoyltransferase (CPT I) activity increased 64% (P < 0.05) in pigs receiving clofibrate. Increased CPT I activity was not congruent with changes in message, as elevated abundance of CPT I mRNA was not detected (P = 0.16) when assessed by qRT-PCR. Neither rates of beta-oxidation nor CPT activities were affected by dietary MCT or by isoproterenol treatment (P > 0.1). Collectively, these findings indicate that clofibrate effectively induced hepatic CPT activity concomitant with increased fatty acid beta-oxidation.  相似文献   

16.
Mice were fed a chow diet plus 10% cellulose, 10% fish oil or 10% sunflower oil for 3 weeks, then exposed to 100% oxygen for 75 h. Large changes in lung fatty acid composition occurred, but this did not affect hyperoxic lung damage nor levels of thiobarbituric acid reactive substances or myeloperoxidase in lungs of mice following exposure to hyperoxia. Thus there is no evidence that the ingestion of large quantities of fish oil increased the susceptibility to the oxidative stress induced by hyperoxia.  相似文献   

17.
A further investigation of the lipolysis induced by medium-chain triglyceride (MCT) was conducted on C57BL/6J mice fed with a diet containing 2% MCT or 2% long-chain triglyceride (LCT). Blood norepinephrine, body fat and blood lipid variables, and the protein or mRNA expression of the genes relevant to lipolysis were measured and analyzed in the white and brown adipose tissue (WAT, BAT). Decreased body fat and improved blood lipid profiles attributable to MCT were confirmed. A higher level of blood norepinephrine was observed with the MCT diet. The adipose triglyceride lipase (ATGL) activity and its mRNA expression, the expression of protein and mRNA of the beta 3 adrenergic receptor (β3-AR) in both WAT and BAT, and the hormone-sensitive lipase (HSL) activity and its mRNA expression in BAT were significantly increased in the mice with MCT feeding. The lipolysis induced by MCT might be partially mediated by increasing norepinephrine, thereafter signaling the up-regulation of β3-AR, ATGL, and HSL in WAT and BAT.  相似文献   

18.
Although medium chain triglyceride (MCT) is less calorically dense than long chain triglyceride (LCT), it produces a greater thermic effect following ingestion. We hypothesized that the previously observed high rate of thermogenesis produced by MCT overfeeding was due to hepatic de novo synthesis of long chain fatty acids (LCFA) from the excess medium chain fatty acids (MCFA). To study this, we compared the effects of overfeeding MCT- and LCT-containing diets on blood lipid profiles. Ten in-patient, nonobese males were overfed (150% of estimated energy requirements) two formula diets for 6 days each, in a randomized crossover design. Diets differed only in the composition of the fat and contained either 40% of energy as MCT or LCT (soybean oil). The major differences between diets in the resulting pattern of blood lipids were: 1) a reduction in fasting serum total cholesterol concentrations with the LCT, but not the MCT diet; and 2) a threefold increase in fasting serum triglyceride concentrations with MCT, but not LCT, diet. Moreover, 10% of the fasting triglyceride fatty acids were medium chain and 40% were 16:0 with the MCT diet. This compared to 1% and 20% for medium chain and 16:0, respectively, with the LCT diet. In addition, there were increases in 16:1, 18:0, and 18:1 in the triglycerides during MCT feeding. The changes in fatty acids in triglycerides with MCT feeding are consistent with the hypothesis that excess dietary MCT cause a significant increase in the hepatic synthesis of these fatty acids from MCFA through de novo synthesis and/or chain elongation and desaturation. These processes could account for the higher rate of postprandial thermogenesis with MCT as compared to LCT.  相似文献   

19.
20.
Although omega-3 (n-3) fatty acids negatively regulate triglyceride biosynthesis, the mechanisms mediating this effect are poorly understood, and emerging evidence suggests that stearoyl-CoA desaturase (Scd1) is required for de novo triglyceride biosynthesis. To investigate this mechanism, we determined the effects of perinatal n-3 deficiency and postnatal repletion on rat liver Scd1 mRNA expression and activity indices (liver 16:1/16:0 and 18:1/18:0 ratios), and determined relationships with postprandial (non-fasting) plasma triglyceride levels. Rats were fed conventional diets with or without the n-3 fatty acid precursor α-linolenic acid (ALA, 18:3n-3) during perinatal development (E0-P100), and a subset of rats fed the ALA- diet were switched to the ALA+ diet post-weaning (P21-P100, repletion). Compared with controls, rats fed the ALA- diet exhibited significantly lower liver long-chain n-3 fatty acid compositions and elevations in monounsaturated fatty acid composition, both of which were normalized in repleted rats. Liver Scd1 mRNA expression and activity indices (16:1/16:0 and 18:1/18:0 ratios) were significantly greater in n-3 deficient rats compared with controls and repleted rats. Among all rats, liver Scd1 mRNA expression was positively correlated with liver 18:1/18:0 and 16:1/16:0 ratios. Plasma triglyceride levels, but not glucose or insulin levels, were significantly greater in n-3 deficient rats compared with controls and repleted rats. Liver Scd1 mRNA expression and activity indices were positively correlated with plasma triglyceride levels. These preclinical findings demonstrate that n-3 fatty acid status is an important determinant of liver Scd1 mRNA expression and activity, and suggest that down-regulation of Scd1 is a mechanism by which n-3 fatty acids repress constitutive triglyceride biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号