首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In sugar manufacturing industries, initially dilute syrup is obtained from the cane sugar or beetroot, which should be concentrated. In many factories, sugar syrup concentration is carried out using evaporation. This process has two main problems. Firstly, it consumes a huge amount of energy due to high latent heat of water and secondly, heating may decompose the sugar molecules resulting in low‐quality and dark‐colored sugar. Low energy consuming reverse osmosis may be employed for concentrating sugar syrup without decomposing the molecules, resulting in high‐quality sugar with low cost. In this study different commercial reverse osmosis membranes (DS, DSII, PVD, FT30, BW30) and one nanofiltration membrane (NF45) were used for sugar syrup concentration. The results show that nanofiltration NF45 membrane has no effect on sugar syrup concentration. The rejections of sugar using DSII and PVD reverse osmosis membranes vary between 23 % and 33 % for different operating conditions. DS membrane rejected around 10 % of the sugar molecules in best conditions. FT30 membrane initially showed better performance (55 %). However, the rejection was decreased during time (minimum 7 %). For BW30 membrane, the rejection of sugar was better (60 %) compared to the other membranes used in this work. For two‐stage processes (i.e. the permeate of the first stage used as a feed for the second stage) the highest rejection (88 %) was obtained.  相似文献   

2.
Purification of lysozyme using ultrafiltration   总被引:2,自引:0,他引:2  
This article examines the separation of lysozyme from chicken egg white by ultrafiltration with 25 kDa and 50 kDa MWCO polysulfone membranes. The effects of pH, system hydrodynamics, feed concentration, and transmembrane pressure on permeate flux, lysozyme transmission, purification factor, and productivity have been discussed. With both types of membranes, higher permeate flux and lysozyme transmission were observed at higher pH. Higher lysozyme purity was generally obtained with the 25 kDa MWCO membrane. Purity of lysozyme decreased when the feed concentration was increased. With the 50 kDa MWCO membrane permeate flux, productivity and the purity of lysozyme were found to increase with increase in transmembrane pressure. The possibility of using a two-step ultrafiltration process for achieving high productivity along with high purity of lysozyme was also investigated.  相似文献   

3.
Permeability of lipid bilayers to water and ionic solutes   总被引:15,自引:0,他引:15  
The lipid bilayer moiety of biological membranes is considered to be the primary barrier to free diffusion of water and solutes. This conclusion arises from observations of lipid bilayer model membrane systems, which are generally less permeable than biological membranes. However, the nature of the permeability barrier remains unclear, particularly with respect to ionic solutes. For instance, anion permeability is significantly greater than cation permeability, and permeability to proton-hydroxide is orders of magnitude greater than other monovalent inorganic ions. In this review, we first consider bilayer permeability to water and discuss proposed permeation mechanisms which involve transient defects arising from thermal fluctuations. We next consider whether such defects can account for ion permeation, including proton-hydroxide flux. We conclude that at least two varieties of transient defects are required to explain permeation of water and ionic solutes.  相似文献   

4.
Isolation of a lipase produced by Pseudomonas aeruginosa (MW 29,000) employed crossflow microfiltration for production of a cell-free enzyme solution and crossflow ultrafiltration for concentration of the enzyme and removal of low molecular weight impurities. Poor flux and enzyme permeation were measured during initial screening of various microfiltration membrane types for isolation of the enzyme from a peptonized-milk-based broth; the results suggested that a soluble broth component was forming a gel layer which controlled both hydraulic flux and enzyme permeation. Reformulation of the fermentation medium resulted in enhanced performance, obtaining fluxes of 40 l/h m2 and enzyme permeation of 50% on hydrophilically-modified PVDF membranes and resulted in a feasible clarification process. Enzyme permeation remained constant with respect to activity in the feed, rather than being proportional to activity in the retentate; it was hypothesized that this resulted from a concomitant concentration of the gel-forming components with cell concentration. Concentration of the clarified enzyme solution was performed using 30 000 MWCO regenerated cellulose membranes. Complete enzyme retention and high flux (57 l/h m2) were maintained through a 130-fold concentration of the microfiltrate. As both systems were taken to the 100 and 1000 l scales, similar filtration performances were obtained with system hold-up volume and pump cavitation becoming important considerations at the larger scales. Excellent reproducibility was observed in a series of eight large-scale experiments.  相似文献   

5.
The temperature dependence of permeation across human red cell membranes has been determined for a series of hydrophilic and lipophilic solutes, including urea and two methyl substituted derivatives, all the straight-chain amides from formamide through valeramide and the two isomers, isobutyramide and isovaleramide. The temperature coefficient for permeation by all the hydrophilic solutes is 12 kcal mol-1 or less, whereas that for all the lipophilic solutes is 19 kcal mol-1 or greater. This difference is consonant with the view that hydrophilic molecules cross the membrane by a path different from that taken by the lipophilic ones. The thermodynamic parameters associated with lipophile permeation have been studied in detail. ΔG is negative for adsorption of lipophilic amides onto an oil-water interface, whereas it is positive for transfer of the polar head from the aqueous medium to bulk lipid solvent. Application of absolute reaction rate theory makes it possible to make a clear distinction between diffusion across the water-red cell membrane interface and diffusion within the membrane. Diffusion coefficients and apparent activation enthalpies and entropies have been computed for each process. Transfer of the polar head from the solvent into the interface is characterized by ΔG = 0 kcal mol-1 and ΔS negative, whereas both of these parameters have large positive values for diffusion within the membrane. Diffusion within the membrane is similar to what is expected for diffusion through a highly associated viscous fluid.  相似文献   

6.
The pervaporation separation of 1,4-dioxane/water mixtures was carried out using crosslinked blend membranes of chitosan (CS) and nylon 66 (NYL). These membranes were characterized by FTIR, TGA, XRD, and tensile strength to assess intermolecular interactions, thermal stability, crystallinity and mechanical strength, respectively. Sorption studies were carried out in pure liquids and binary mixtures of different compositions to evaluate polymer–liquid interactions. The effects of CS/NYL ratio, membrane thickness, feed concentration on the transmembrane permeation rate and separation factor were investigated. Optimum CS/NYL ratio was determined as 90/10 (w/w) for 4.3 wt% feed water concentration at 40 °C. Increasing barrier from 30 to 120 μm improved the separation factor from 767 to 1123 at the cost of flux, which lowered from 0.118 to 0.028 kg/m2 h. The membrane performance was also investigated for the separation of various feed compositions of 1,4-dioxane–water mixtures and permeate pressures. The azeotrope formed at 82-wt% dioxane was easily broken with a selectivity of 865 and water flux of 0.089 kg/m2 h.  相似文献   

7.
In order to extract or remove organic acids from kiwifruit juice, we evaluated their separation and transport rates through supported liquid membranes (SLMs). The liquid membrane consisted of an organic solution composed of a carrier (Aliquat 336/Alamine 336) and a linear alcohol (oleyl alcohol) and was loaded on a microporous polypropylene support (commercial grade Celgard 2500/2400). These SLMs were evaluated (i) in a batch cell to determine the permeability and (ii) in a continuous spiral membrane module to study the effects of various process parameters – flow of feed and strip solutions, membrane composition, recycling mode of operation and kiwifruit juice at natural pH. It was observed that there exists an optimum for each system: pH?2.5–?3.0 for Alamine 336/oleyl alcohol and pH?4.5 for Aliquat 336/oleyl alcohol. At this pH?the flux rates of citric acid and malic acid was greater (6–8 times) than that of quinic acid. The flux rates decreased (greatly for citric acid) with the flow rate of feed and strip solutions and increased (considerably for citric acid) with the SLM composition . The recycling of feed and strip solutions significantly improved the removal efficiency. The SLM system retained its performance over a period of a few days. The SLM process allowed extraction of the above three organic acids (ascorbic acid was removed in trace amounts) from kiwifruit juice at a rate of a few percent (5%) in a single-pass processing.  相似文献   

8.
Butyrylcellulose (BuCell) with different degrees of butyrylation was synthesized as a membrane material for the separation of benzene/cyclohexane (Bz/Chx) mixtures. A BuCell membrane with a degree of butyrylation of 2.3 showed high benzene/cyclohexane selectivity for Bz/Chx mixtures by pervaporation. Both the permeation rate and the benzene/cyclohexane selectivity of the BuCell membrane increased with increasing benzene concentration in the feed mixture. The increase in the permeation rate resulted from an increase in the swelling of the membrane, and the increase in the benzene/cyclohexane selectivity can be attributed to an increase in the diffusion selectivity. With increasing degree of butyrylation of BuCell, the permeation rate increased; on the other hand, the benzene/cyclohexane selectivity decreased slightly. This result can qualitatively be explained by the degree of swelling, the density, and the contact angle of the BuCell membranes. The permeation and separation mechanism of Bz/Chx mixtures through BuCell membranes by pervaporation is discussed on the basis of the solution-diffusion model, which is typically applied for permeation through dense, nonporous membranes.  相似文献   

9.
Ma H  Burger C  Hsiao BS  Chu B 《Biomacromolecules》2011,12(4):970-976
Ultrafine polysaccharide nanofibers (i.e., cellulose and chitin) with 5-10 nm diameters were employed as barrier layers in a new class of thin-film nanofibrous composite (TFNC) membranes for water purification. In addition to concentration, the viscosity of the polysaccharide nanofiber coating suspension was also found to be affected by the pH value and ionic strength. When compared with two commercial UF membranes (PAN10 and PAN400), 10-fold higher permeation flux with above 99.5% rejection ratio were achieved by using ultrafine cellulose nanofibers-based TFNC membranes for ultrafiltration of oil/water emulsions. The very high surface-to-volume ratio and negatively charged surface of cellulose nanofibers, which lead to a high virus adsorption capacity as verified by MS2 bacteriophage testing, offer further opportunities in drinking water applications. The low cost of raw cellulose/chitin materials, the environmentally friendly fabrication process, and the impressive high-flux performance indicate that such ultrafine polysaccharide nanofibers-based TFNC membranes can surpass conventional membrane systems in many different water applications.  相似文献   

10.
采用间歇浓缩方式,研究了纳滤对胸腺五肽离子交换洗脱液的浓缩特性。采用纳滤浓缩模型预测胸腺五肽离子交换洗脱液纳滤过程,系统考察透过通量和胸腺五肽浓度等随过程时间的变化。实验结果表明:截留相对分子质量为150的纳滤膜对胸腺五肽的截留率达到98.66%;胸腺五肽洗脱液透过通量随操作压力变化的结果表明,其纳滤过程为两机理控制;纳滤浓缩模型较好地模拟了胸腺五肽的纳滤浓缩过程,说明该模型适用于小分子多肽的纳滤浓缩过程。  相似文献   

11.
Recently a furfural nematicide Multiguard Protect EC was launched for use on turfgrasses in the United States. A series of greenhouse experiments were conducted to determine the concentration and exposure time required for this formulation to irreversibly affect Belonolaimus longicaudatus, and to study factors that might affect the practicality of furfural use in turfgrass systems. One experiment exposed B. longicaudatus to increasing concentrations of furfural (0 to 990 ppm) in vitro for either 24 or 48 hr, followed by inoculation onto bermudagrass. A second experiment evaluated effects of exposure of B. longicaudatus to increasing concentrations of furfural in soil solution on bermudagrass with or without an organic thatch layer. A third experiment evaluated effects on B. longicaudatus of increasing concentrations of furfural applied as a spray treatment to creeping bentgrass. Results from the in vitro exposure experiment found decreasing numbers of B. longicaudatus with increasing furfural concentration beginning with the lowest concentration tested (270 ppm). Belonolaimus longicaudatus were virtually eliminated with furfural concentrations ≥ 720 ppm. Similarly, exposure to increasing concentration of furfural in soil solution resulted in increasing reduction in numbers of B. longicaudatus. Presence of thatch slightly reduced the population density of B. longicaudatus. Spray application of furfural only reduced numbers of B. longicaudatus at the two highest rates (3,600 and 4,950 ppm).  相似文献   

12.
Permeability of Lipid Bilayer Membranes to Organic Solutes   总被引:6,自引:2,他引:4       下载免费PDF全文
A sensitive fluorescence technique was used to measure transport of organic solutes through lipid bilayer membranes and to relate permeability to the functional groups of the solute, lipid composition of the membrane, and pH of the medium. Indole derivatives having ethanol, acetate, or ethylamine in the 3-position, representing neutral, acidic, and basic solutes, respectively, were the primary models. The results show: (a) Neutral solute permeability is not greatly affected by changes in lipid composition but presence or absence of cholesterol in the membranes could greatly alter permeability of the dissociable substrates. (b) Indole acetate permeability was reduced by introduction of phosphatidylserine into membranes to produce a net negative charge on the membranes. (c) Permeability response of dissociable solutes to variation in pH was in the direction predicted but not always of the magnitude expected from changes in the calculated concentrations of the undissociated solute in the bulk aqueous phase. Concentration gradients of amines across the membranes caused substantial diffusion potentials, suggesting that some transport of the cationic form of the amine may occur. It is suggested that factors such as interfacial charge and hydration structure, interfacial polar forces, and lipid organization and viscosity, in addition to the expected solubility-diffusion relations, may influence solute flux.  相似文献   

13.
During freezing of isolated spinach thylakoids in sugar/salt solutions, the two solutes affected membrane survival in opposite ways: membrane damage due to increased electrolyte concentration can be prevented by sugar. Calculation of the final concentrations of NaCl or glucose reached in the residual unfrozen portion of the system revealed that the effects of the solutes on membrane activity can be explained in part by colligative action. In addition, the fraction of the residual liquid in the frozen system contributes to membrane injury. During severe freezing in the presence of very low initial solute concentrations, membrane damage drastically increased with a decrease in the volume of the unfrozen solution. Freezing injury under these conditions is likely to be due to mechanical damage by the ice crystals that occupy a very high fraction of the frozen system. At higher starting concentrations of sugar plus salt, membrane damage increased with an increase in the amount of the residual unfrozen liquid. Thylakoid inactivation at these higher initial solute concentrations can be largely attributed to dilution of the membrane fraction, as freezing damage at a given sugar/salt ratio decreased with increasing the thylakoid concentration in the sample. Moreover, membrane survival in the absence of freezing decreased with lowering the temperature, indicating that the temperature affected membrane damage not only via alterations related to the ice formation. From the data it was evident that damage of thylakoid membranes was determined by various individual factors, such as the amount of ice formed, the final concentrations of solutes and membranes in the residual unfrozen solution, the final volume of this fraction, the temperature and the freezing time. The relative contribution of these factors depended on the experimental conditions, mainly the sugar/salt ratio, the initial solute concentrations, and the freezing temperature.  相似文献   

14.
Nanoporous carbon membranes could be very attractive for applications of ultrafiltration in the biotechnology industry because of their greater mechanical strength and longer membrane life. The objective of this study was to obtain quantitative data on the performance characteristics of nanoporous carbon membranes formed within a stainless steel support that was first modified by deposition of silica particles within the macroporous support. The nanoporous carbon membrane effectively removed small solutes from a protein solution using diafiltration, with performance comparable to that of commercial polymeric membranes. Protein fouling was evident, although the nanoporous carbon membranes were easily regenerated; cleaning with 0.5 N NaOH at 50 degrees C completely restored the water permeability for multiple cycles. The nanoporous carbon membranes were also compatible with steam sterilization. Significant increases in process flux could be obtained using periodic back-pulsing, with no evidence of any structural alterations in the membrane. These results clearly demonstrate the potential benefits and opportunities for using nanoporous carbon membranes for protein ultrafiltration.  相似文献   

15.
Nanofiltration (NF) was investigated as an alternative to desalting electrodialysis (ED) and ion exchange for the recovery of ammonium lactate from fermentation broth. Three commercial NF membranes, NF45, NF70, and NTR-729HF, were characterized with 50 mM NaCl, MgSO(4), and glucose solutions. NF45 membrane was selected because it showed the lowest rejection of monovalent ion, the highest rejection of divalent ion, and the highest rejection of nonpolar molecule. Effects of the operating pressure were investigated in a range of 100-400 psig, on the flux, lactate recovery, and glucose and magnesium removal from a real fermentation broth containing about 1.0 M of ammonium lactate. The flux and recovery rate increased linearly with the pressure. However, lactate rejection also increased with the pressure, lowering the recovery yield. More magnesium ions and glucose were rejected as the pressure was increased, and at 400 psig, for example, magnesium ion was almost completely rejected, highlighting the chance of obviating the necessity of ion exchange to remove hardness, by using NF instead of desalting ED. Membrane fouling was not so severe as expected, considering the complex nature and a rather high concentration of the fermentation broth treated.  相似文献   

16.
Liquors from water treatments of rice husks (containing soluble xylan-derived products) were processed with NF and UF membranes for concentrating and removing both monosaccharides and non-saccharide compounds. Among the commercial membranes assayed, the best results were achieved with the 4 kDa polymeric tubular ESP04 (PCI Membranes), and the 1 kDa ceramic monolithic Kerasep Nano (Novasep). Several trade-offs were identified both in membrane selection and in operating conditions. The ESP04 polymeric membrane provided the best fractionation, but lower recovery under comparable experimental conditions, while its fluxes were about half of those of the ceramic Kerasep Nano membrane. Increase in transmembrane pressure resulted in improved product recovery, at the expense of a lower purity. Additional data on product refining by coupling membrane processing with extraction and ion exchange are provided.  相似文献   

17.
The human malaria parasite, Plasmodium falciparum, induces in the plasma membrane of its host red blood cell new permeation pathways (NPP) that allow the influx of a variety of low molecular weight solutes. In this study we have demonstrated that the NPP confer upon the parasitised erythrocyte a substantial permeability to a range of monovalent organic (quaternary ammonium) cations, the largest having an estimated minimum cross-sectional diameter of 11-12 A. The rate of permeation of these cations showed a marked dependence on the nature of the anion present, increasing with the lyotropicity of the anion. There was no clear relationship between the permeation rate and either the size or the hydrophobicity of these solutes. However, the data were consistent with the rate of permeation being influenced by a combination of these two factors, with the pathways showing a marked preference for the relatively small and hydrophobic phenyltrimethylammonium ion over larger or less hydrophobic solutes. Large quaternary ammonium cations inhibited flux via the NPP, as did long-chain n-alkanols. For both classes of compound the inhibitory potency increased with the size and hydrophobicity of the solute. This study extends the range of solutes known to permeate the NPP of malaria-infected erythrocytes as well as providing some insight into the factors governing the rate of permeation.  相似文献   

18.
The Coupling of Solute Fluxes in Membranes   总被引:4,自引:4,他引:0  
  相似文献   

19.
Using fluorescent, anionic dyes such as carboxyfluorescein as model solutes, it is shown that the forces allowing such solutes to be retained within sealed lipid vesicles, against a large concentration gradient, can be primarily electrostatic in nature. At temperatures distant from that of the ordered-fluid lipid phase transition a small number of the anionic dye molecules trapped within lipid vesicles are capable of traversing the lipid bilayer and establishing an electrical diffusion potential across the membrane. Further solute movement can then only occur with the concomitant permeation of ions which restore electrical balance. A significant flux of dye can be triggered by (a) increasing the permeability of the membrane to ions (for example by the addition of ionophores such as gramicidin, or by allowing the lipid to approach a phase transition) or by (b) adding lipophilic counterions such as tetraphenylborate or dinitrophenol to the system.  相似文献   

20.
Using fluorescent, anionic dyes such as carboxyfluorescein as model solutes, it is shown that the forces allowing such solutes to be retained within sealed lipid vesicles, against a large concentration gradient, can be primarily electrostatic in nature. At temperatures distant from that of the ordered-fluid lipid phase transition a small number of the anionic dye molecules trapped within lipid vesicles are capable of traversing the lipid bilayer and establishing an electrical diffusion potential across the membrane. Further solute movement can then only occur with the concomitant permeation of ions which restore electrical balance. A significant flux of dye can be triggered by (a) increasing the permeability of the membrane to ions (for example by the addition of ionophores such as gramicidin, or by allowing the lipid to approach a phase transition) or by (b) adding lipophilic counterions such as tetraphenylborate or dinitrophenol to the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号