首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tau, a microtubule-associated protein enriched in the axon, is known to stabilize and promote the formation of microtubules during axonal outgrowth. Several studies have reported that tau was associated with membranes. In the present study, we further characterized the interaction of tau with membranous elements by examining its distribution in subfractions enriched in either Golgi or endoplasmic reticulum membranes isolated from rat brain. A subfraction enriched with markers of the medial Golgi compartment, MG160 and mannosidase II, presented a high tau content indicating that tau was associated with these membranes. Electron microscope morphometry confirmed the enrichment of this subfraction with Golgi membranes. Double-immunogold labeling experiments conducted on this subfraction showed the direct association of tau with vesicles labeled with either an antibody directed against MG160 or TGN38. The association of tau with the Golgi membranes was further confirmed by immunoisolating Golgi membranes with an anti-tau antibody. Immunogold labeling confirmed the presence of tau on the Golgi membranes in neurons in vivo. Overexpression of human tau in primary hippocampal neurons induced the formation of large Golgi vesicles that were found in close vicinity to tau-containing microtubules. This suggested that tau could serve as a link between Golgi membranes and microtubules. Such role for tau was demonstrated in an in vitro reconstitution assay. Finally, our results showed that some tau isoforms present in the Golgi subfraction were phosphorylated at the sites recognized by the phosphorylation-dependent antibodies PHF-1 and AT-8.  相似文献   

2.
The positioning and dynamics of organelles in eukaryotic cells critically depend on membrane-cytoskeleton interactions. Motor proteins play an important role in the directed movement of organelle membranes along microtubules, but the basic mechanism by which membranes stably interact with the microtubule cytoskeleton is largely unknown. Here we report that p63, an integral membrane protein of the reticular subdomain of the rough endoplasmic reticulum (ER), binds microtubules in vivo and in vitro. Overexpression of p63 in cell culture led to a striking rearrangement of the ER and to concomitant bundling of microtubules along the altered ER. Mutational analysis of the cytoplasmic domain of p63 revealed two determinants responsible for these changes: an ER rearrangement determinant near the N-terminus and a central microtubule-binding region. The two determinants function independently of one another as indicated by deletion experiments. A peptide corresponding to the cytoplasmic tail of p63 promoted microtubule polymerization in vitro. p63 is the first identified integral membrane protein that can link a membrane organelle directly to microtubules. By doing so, it may contribute to the positioning of the ER along microtubules.  相似文献   

3.
A subfraction of rough endoplasmic reticulum (RER) characterized by its close association with mitochondria (MITO) was isolated from low speed pellets of normal rat liver homogenate under defined ionic conditions. This fraction enriched in MITO-RER complexes contained 20% of cellular RNA, 20% of glucose-6-phosphatase and 47% of cytochrome c oxidase activities. Morphologically, the isolated MITO-RER complexes closely resembled physiological associations between the two organelles commonly seen in intact liver. Partial dissociation of RER from mitochondria of the MITO-RER fraction was achieved by either EDTA (0.5 mM) or by hypotonic/hypertonic treatment of MITO-RER complexes. With the latter procedure approx. 70% of RER (RERmito) with 50% of ribosomes still attached could be separated from the inner compartments of mitochondria. This RERmoto exhibited a higher glucose-6-phosphatase activity than RER isolated as rough microsomes from the postmitochondrial supernatant. Isopycnic centrifugation on linear metrizamide gradients revealed that the mitochondria-associated part of RER corresponds to the high density, ribosome-rich subfraction of rough microsomes isolated in cation-free sucrose solution. The combined data demonstrate that a morphologically and biochemically distinct portion of RER is associated with mitochondria and support the concept of considerable intracellular heterogeneities in distribution of enzymes and enzyme systems along the lateral plane of the endoplasmic reticulum membrane system.  相似文献   

4.
p180 was originally reported as a ribosome-binding protein on the rough endoplasmic reticulum membrane, although its precise role in animal cells has not yet been elucidated. Here, we characterized a new function of human p180 as a microtubule-binding and -modulating protein. Overexpression of p180 in mammalian cells induced an elongated morphology and enhanced acetylated microtubules. Consistently, electron microscopic analysis clearly revealed microtubule bundles in p180-overexpressing cells. Targeted depletion of endogenous p180 by small interfering RNAs led to aberrant patterns of microtubules and endoplasmic reticulum in mammalian cells, suggesting a specific interaction between p180 and microtubules. In vitro sedimentation assays using recombinant polypeptides revealed that p180 bound to microtubules directly and possessed a novel microtubule-binding domain (designated MTB-1). MTB-1 consists of a predicted coiled-coil region and repeat domain, and strongly promoted bundle formation both in vitro and in vivo when expressed alone. Overexpression of p180 induced acetylated microtubules in cultured cells in an MTB-1-dependent manner. Thus, our data suggest that p180 mediates interactions between the endoplasmic reticulum and microtubules mainly through the novel microtubule-binding and -bundling domain MTB-1.  相似文献   

5.
The microtubule-binding 63-kDa cytoskeleton-linking membrane protein (CLIMP-63) is an integral membrane protein that links the endoplasmic reticulum (ER) to microtubules. Here, we tested whether this interaction is regulated by phosphorylation. Metabolic labeling with (32)P showed that CLIMP-63 is a phosphoprotein with increased phosphorylation during mitosis. CLIMP-63 of mitotic cells is unable to bind to microtubules in vitro. Mitotic phosphorylation can be prevented by mutation of serines 3, 17, and 19 in the cytoplasmic domain of CLIMP-63. When these residues are mutated to glutamic acid, and hence mimic mitotic phosphorylation, CLIMP-63 does no longer bind to microtubules in vitro. Overexpression of the phospho-mimicking mitotic form of CLIMP-63 in interphase cells leads to a collapse of the ER around the nucleus, leaving the microtubular network intact. The results suggest that CLIMP-63-mediated stable anchoring of the ER to microtubules is required to maintain the spatial distribution of the ER during interphase and that this interaction is abolished by phosphorylation of CLIMP-63 during mitosis.  相似文献   

6.
The movement protein (MP) of Tobacco mosaic virus mediates the cell-to-cell transport of viral RNA through plasmodesmata, cytoplasmic cell wall channels for direct cell-to-cell communication between adjacent cells. Previous in vivo studies demonstrated that the RNA transport function of the protein correlates with its association with microtubules, although the exact role of microtubules in the movement process remains unknown. Since the binding of MP to microtubules is conserved in transfected mammalian cells, we took advantage of available mammalian cell biology reagents and tools to further address the interaction in flat-growing and transparent COS-7 cells. We demonstrate that neither actin, nor endoplasmic reticulum (ER), nor dynein motor complexes are involved in the apparent alignment of MP with microtubules. Together with results of in vitro coprecipitation experiments, these findings indicate that MP binds microtubules directly. Unlike microtubules associated with neuronal MAP2c, MP-associated microtubules are resistant to disruption by microtubule-disrupting agents or cold, suggesting that MP is a specialized microtubule binding protein that forms unusually stable complexes with microtubules. MP-associated microtubules accumulate ER membranes, which is consistent with a proposed role for MP in the recruitment of membranes in infected plant cells and may suggest that microtubules are involved in this process. The ability of MP to interfere with centrosomal gamma-tubulin is independent of microtubule association with MP, does not involve the removal of other tested centrosomal markers, and correlates with inhibition of centrosomal microtubule nucleation activity. These observations suggest that the function of MP in viral movement may involve interaction with the microtubule-nucleating machinery.  相似文献   

7.
A subfraction of rough endoplasmic reticulum (RER) structurally associated with mitochondria (mito-RER complexes) was isolated from crude nuclear fractions of rat liver homogenate. When apocytochrome P450 synthesis (which presumably occurs in RER) and mitochondrial heme synthesis was dissociated by concomitant treatment of rats with phenobarbital and cobaltous chloride, apocytochrome P450 accumulated predominantly in mito-RER complexes. These data suggest that cytochrome P450 synthesis requires structural interaction of mitochondria and RER.  相似文献   

8.
The intracellular assembly site for flaviviruses in currently not known but is presumed to be located within the lumen of the rough endoplasmic reticulum (RER). Building on previous studies involving immunofluorescence (IF) and cryoimmunoelectron microscopy of Kunjin virus (KUN)-infected cells, we sought to identify the steps involved in the assembly and maturation of KUN. Thus, using antibodies directed against envelope protein E in IF analysis, we found the accumulation of E within regions coincident with the RER and endosomal compartments. Immunogold labeling of cryosections of infected cells indicated that E and minor envelope protein prM were localized to reticulum membranes continuous with KUN-induced convoluted membranes (CM) or paracrystalline arrays (PC) and that sometimes the RER contained immunogold-labeled virus particles. Both proteins were also observed to be labeled in membranes at the periphery of the induced CM or PC structures, but the latter were very seldom labeled internally. Utilizing drugs that inhibit protein and/or membrane traffic throughout the cell, we found that the secretion of KUN particles late in infection was significantly affected in the presence of brefeldin A and that the infectivity of secreted particles was severely affected in the presence of monensin and N-nonyl-deoxynojirimycin. Nocodazole did not appear to affect maturation, suggesting that microtubules play no role in assembly or maturation processes. Subsequently, we showed that the exit of intact virions from the RER involves the transport of individual virions within individual vesicles en route to the Golgi apparatus. The results suggest that the assembly of virions occurs within the lumen of the RER and that subsequent maturation occurs via the secretory pathway.  相似文献   

9.
The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains.  相似文献   

10.
To study the interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules, we have developed a quadruple fluorescence labeling procedure to visualize all four structures in the same cell. We applied this approach to study cellular organization in control cells and in cells treated with the microtubule drugs vinblastine or taxol. Endoplasmic reticulum was visualized by staining glutaraldehyde-fixed cells with the dye 3,3'-dihexyloxacarbocyanine iodide. After detergent permeabilization, triple immunofluorescence was carried out to specifically visualize mitochondria, vimentin intermediate filaments, and microtubules. Mitochondria in human fibroblasts were found to be highly elongated tubular structures (lengths up to greater than 50 microns), which in many cases were apparently fused to each other. Mitochondria were always observed to be associated with endoplasmic reticulum, although endoplasmic reticulum also existed independently. Intermediate filament distribution could not completely account for endoplasmic reticulum or mitochondrial distributions. Microtubules, however, always codistributed with these organelles. Microtubule depolymerization in vinblastine treated cells resulted in coaggregation of endoplasmic reticulum and mitochondria, and in the collapse of intermediate filaments. The spatial distributions of organelles compared with intermediate filaments were not identical, indicating that attachment of organelles to intermediate filaments was not responsible for organelle aggregation. Mitochondrial associations with endoplasmic reticulum, on the other hand, were retained, indicating this association was stable regardless of endoplasmic reticulum form or microtubules. In taxol-treated cells, endoplasmic reticulum, mitochondria, and intermediate filaments were all associated with taxol-stabilized microtubule bundles.  相似文献   

11.
Liver rough endoplasmic reticulum (RER) membranes were isolated from rats given [3H]orotic acid for 48 h (ribosomal RNA [rRNA] label) or for 3 h along with 5-fluoroorotate; this latter procedure permits the labeling of cytoplasmic messenger RNAs (mRNAs) in the absence of rRNA labeling. More than 50% of the labeled mRNA remained attached to membranes of the RER after complete removal of ribosomes with a buffer of high ionic strength in the presence of puromycin. Under similar conditions, membranes retained 40% of their polyadenylate as determined by a [3H]-polyuridylate hybridization assay. Treatment of mRNA-labeled endoplasmic reticulum membranes with pancreatic RNase indicates that the polyadenylate and possibly nonpolyadenylate-pyrimidine portions of the messenger are involved in the binding of mRNA to the membranes. The implication of these results in furthering our understanding of the mechanisms of the translational regulation of genetic expression is discussed.  相似文献   

12.
We previously demonstrated (Ookata et al., 1992, 1993) that the p34cdc2/cyclin B complex associates with microtubules in the mitotic spindle and premeiotic aster in starfish oocytes, and that microtubule- associated proteins (MAPs) might be responsible for this interaction. In this study, we have investigated the mechanism by which p34cdc2 kinase associates with the microtubule cytoskeleton in primate tissue culture cells whose major MAP is known to be MAP4. Double staining of primate cells with anti-cyclin B and anti-MAP4 antibodies demonstrated these two antigens were colocalized on microtubules and copartitioned following two treatments that altered MAP4 distribution. Detergent extraction before fixation removed cyclin B as well as MAP4 from the microtubules. Depolymerization of some of the cellular microtubules with nocodazole preferentially retained the microtubule localization of both cyclin B and MAP4. The association of p34cdc2/cyclin B kinase with microtubules was also shown biochemically to be mediated by MAP4. Cosedimentation of purified p34cdc2/cyclin B with purified microtubule proteins containing MAP4, but not with MAP-free microtubules, as well as binding of MAP4 to GST-cyclin B fusion proteins, demonstrated an interaction between cyclin B and MAP4. Using recombinant MAP4 fragments, we demonstrated that the Pro-rich C-terminal region of MAP4 is sufficient to mediate the cyclin B-MAP4 interaction. Since p34cdc2/cyclin B physically associated with MAP4, we examined the ability of the kinase complex to phosphorylate MAP4. Incubation of a ternary complex of p34cdc2, cyclin B, and the COOH-terminal domain of MAP4, PA4, with ATP resulted in intracomplex phosphorylation of PA4. Finally, we tested the effects of MAP4 phosphorylation on microtubule dynamics. Phosphorylation of MAP4 by p34cdc2 kinase did not prevent its binding to microtubules, but abolished its microtubule stabilizing activity. Thus, the cyclin B/MAP4 interaction we have described may be important in targeting the mitotic kinase to appropriate cytoskeletal substrates, for the regulation of spindle assembly and dynamics.  相似文献   

13.
The distribution of glucose-6-phosphatase (G6Pase) activity in the epithelium of the small intestine in mouse embryos (the last 4 days of gestation) was studied by electron microscope cytochemistry and by enzymatic assays. At 16 days, the lead phosphate deposited by the cytochemical reaction is localized on the rough endoplasmic reticulum (RER) and nuclear envelope of very few cells in the duodenum and jejunum. Positive cells are more frequently seen in the upper part of the developing villi. At 17 days of gestation, a tremendous burst in RER differentiation is noticed in all parts of the small intestine and concomitantly glycogen disappears. At 18 days of gestation all the principal cells of the intestinal mucosa show a well differentiated positive RER and the enzyme is also present in the smooth endoplasmic reticulum. Biochemically, G6Pase activity is detected in the proximal 2 thirds of the small intestine at 17 days of gestation and appears at 18 days in the last third. Afterwards the activity increases up until birth. These results suggest (1) that the endoplasmic reticulum differentiates very late in the intestinal mucosa of mouse embryos (2) that the differentiation with respect to G6Pase is asynchronous between the enterocytes, (3) that for a given cell all the cisternae of RER are involved in G6Pase synthesis at the same moment and (4) that the enterocytes of the duodenum differentiate sooner and faster that those of the jejunum and ileum.  相似文献   

14.
Summary The distribution of MAP2 and actin in dendritic spines of the visual and cerebellar cortices, dentate fascia, and hippocampus was determined by using immunogold electron microscopy. By this approach, we have confirmed the presence of MAP2 in dendritic spines and identified substructures within the spine compartment showing MAP2 immunoreactivity. MAP2 immunolabeling was mainly associated with filaments which reacted with a monoclonal anti-actin antibody. Also, by immunogold double-labeling we colocalized MAP2 with actin on the endomembranes of the spine apparatus, smooth endoplasmic reticulum, and in the postsynaptic density. Labeling was nearly absent in axons and axonal terminals. These results indicate that MAP2 is an actin-associated protein in dendritic spines. Thus, MAP2 may organize actin filaments in the spine and endow the actin network of the spine with dynamic properties that are necessary for synaptic plasticity.  相似文献   

15.
Oligosaccharyltransferase catalyzes the N-linked glycosylation of asparagine residues on nascent polypeptides in the lumen of the rough endoplasmic reticulum (RER). A protein complex composed of 66, 63, and 48 kd subunits copurified with oligosaccharyltransferase from canine pancreas. The 66 and 63 kd subunits were shown by protein immunoblotting to be identical to ribophorin I and II, two previously identified RER glycoproteins that colocalize with membrane-bound ribosomes. The transmembrane segment of ribophorin I was found to be homologous to a recently proposed dolichol recognition consensus sequence. Based on a revision of the consensus sequence, we propose a model for the interaction of dolichol with the glycosyltransferases that catalyze the assembly and transfer of lipid-linked oligosaccharides.  相似文献   

16.
Cultured callus tissue of hazel (Corylus avellana L.), which has the potency of somatic embryogenesis, was used for the study of cell ultrastructure in the course of callus growth and embryoid formation. The meristematic cells of this tissue exhibit a specific organization of rough endoplasmic reticulum (RER), stacked into extensive parallel sheets. The membranes of the aggregated RER are associated with orderly arrays of bound ribosomes. The high regularity of the alignment of the attached ribosomes seems to be influenced by the distance between the two neighbouring membranes in the RER aggregate. The RER aggregates with orderly attached ribosomes are more frequently found in callus cells and in early embryogenesis than in the advanced stages of embryo development.  相似文献   

17.
The signal for retention in the endoplasmic reticulum of the E3/19K protein of adenovirus type 2 is located within the carboxyl-terminal cytoplasmic extension. A synthetic peptide corresponding to this sequence showed affinity for beta-tubulin, could promote tubulin polymerization in vitro, and bound to taxol-polymerized microtubules. When compared with the microtubule binding sequences from two microtubule-associated proteins (MAPs; MAP2 and tau), we found similarities suggesting that the cytoplasmic tail might bind to tubulin/microtubules in a MAPs-like fashion. A synthetic peptide corresponding to the cytoplasmic tail of an E3/19K deletion mutant not retained in the endoplasmic reticulum was also tested. It had the same net charge but did not promote tubulin polymerization in vitro nor did it show measurable affinity for tubulin or microtubules. This indicates that binding to microtubules is important for retention of the E3/19K protein in the endoplasmic reticulum.  相似文献   

18.
The intracellular sites of biosynthesis of the structural proteins of murine hepatitis virus A59 have been analyzed using cell fractionation techniques. The nucleocapsid protein N is synthesized on free polysomes, whereas the envelope glycoproteins E1 and E2 are translated on the rough endoplasmic reticulum (RER). Glycoprotein E2 present in the RER contains N-glycosidically linked oligosaccharides of the mannose-rich type, supporting the concept that glycosylation of this protein is initiated at the co-translational level. In contrast, O-glycosylation of E1 occurs after transfer of the protein to smooth intracellular membranes. Monensin does not interfere with virus budding from the membranes of the endoplasmic reticulum, but it inhibits virus release and fusion of infected cells. The oligosaccharide side chains of E2 obtained under these conditions are resistant to endoglycosidase H and lack fucose suggesting that transport of this glycoprotein is inhibited between the trans Golgi cisternae and the cell surface. Glycoprotein E1 synthesized in the presence of monensin is completely carbohydrate-free. This observation suggests that the intracellular transport of this glycoprotein is also blocked by monensin.  相似文献   

19.
In the post-partum rat endometrium, ultrastructural distinction could be made between stromal cells (fibroblast-like cells) and macrophages, especially by the freeze-fracture technic. The stromal cells were characterized by a well-developed rough-surfaced endoplasmic reticulum (RER) and intercellular junctions, while the macrophages had many vacuoles and vesicles, but no intercellular contact with each other. The freeze-fracture image showed that the stromal cells had many low linear elevations and gap junctions on the cleaved plane of the cell membranes, while the macrophages had no linear elevations or intercellular junctions. The cell membranes of the stromal cells had more intramembranous particles (IMP) (P-face 697 +/- 63/micrometers 2, E-face 303 +/- 52/micrometers 2) than those of the macrophages (P-face 467 +/- 50/micrometers 2, E-face 217 +/- 35/micrometers 2). It was confirmed that these two types of cell phagocytosed collagen fibrils.  相似文献   

20.
Neuronal polarity is established by the differentiation of two types of cytoplasmic processes: dendrites and the axon. These processes can be distinguished by their composition in microtubule-associated proteins, the high molecular weight MAP2 proteins (HMWMAP2) being found in the dendrites and tau proteins in the axon. It is believed that the main contribution of HMWMAP2 to the acquisition and maintenance of dendrites is to promote microtubule assembly and stability. However, recent studies force us to enlarge our view on how HMWMAP2 might contribute to defining the role of the dendritic microtubules. The purpose of this article is to convey our view that HMWMAP2 are important players in defining the contribution of microtubules to dendritic identity by anchoring membranous organelles and signaling proteins to the dendritic microtubules and by being a receptor for neurosteroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号