首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Sediment plays a key role in internal nutrient cycling and eutrophication in lakes. However, studies focusing on the efficiency of the biomanipulation techniques for improving the control of primary producers have rarely examined the effects of changes in food‐web structure on the sediment biochemical composition and biodegradability. 2. In a 1‐year experiment conducted in large replicated mesocosms, we tested how the absence or presence of a zooplanktivorous fish (roach, Rutilus rutilus) affected the elemental composition and the potential biodegradability of recently deposited sediment in a eutrophic system. The potential biodegradability of these sediments was assessed in laboratory microcosms by measuring the production of CO2 during 44‐day incubations. 3. The potential biodegradability of recently deposited sediment from the fish treatment was 60% higher than that from the fishless treatment. This higher biodegradability was corroborated by a higher annual loss of sediment in fish enclosures (36%) than in fishless ones (16%). Annual losses of carbon, nitrogen and organic phosphorous were higher for sediment from fish enclosures. 4. Carbon and nitrogen contents of sediment were higher for the fish treatment. In contrast, the sediment C/N ratio, one of the proxies used to estimate sediment biodegradability, did not differ between treatments. No relationship was observed between elemental composition of sediment and its potential biodegradability. This latter appeared to be more probably dependent on the biochemical composition of the sediment and especially on the content of labile compounds such as proteins, sugars and polyunsaturated fatty acids. The use of sterols as biomarkers revealed an important degradation by microorganisms of 1‐year‐old sediment from both fish and fishless treatments. 5. Our results revealed that fish biomanipulations might favour clear water states not only through a stronger top–down control on phytoplankton but also through a lower biodegradability of sediment reducing internal nutrient cycling.  相似文献   

2.
A simple heuristic theory based on conservation of matter and describing the fate of autotrophic production in pelagic ecosystems was developed to assist in conceptualizing how zooplankton affect sedimentation processes in lakes and oceans. The theory predicted that effects of zooplankton on the fraction of autotrophic incorporation that sediments (the export ratio) will be a function of factors related both to zooplankton digestion and egestion and to tendencies of particulate matter to sediment directly prior to mineralization. As a result, effects of zooplankton grazing on the export ratio were predicted to be site-dependent, a function of physical conditions and zooplankton communities characterizing an ecosystem. The theory was tested by monitoring autotrophic production of C, N, and P, sedimentation of C, N, and P, and zooplankton biomass in two lakes of the Canadian shield characterized by contrasting morphometry and food-web structure. In Lake 110, a small elongate lake protected from wind exposure, export ratios of C, N, and P declined strongly with zooplankton biomass. In contrast, in L240, a larger lake with considerably greater wind exposure, export ratios increased with zooplankton biomass. These results were consistent with predictions of our theory that effects of zooplankton on sedimentation processes will depend on the tendency of particulate matter to directly sediment relative to the tendency of egested materials to sediment. However, no significant differences in relationships between export ratios for C, N, and P and zooplankton biomass were found.  相似文献   

3.
1. Aquatic herbivores typically have much higher concentrations of nutrients (e.g. N and P) in their tissues than there is in the food they eat. These stoichiometric differences can cause herbivores to be limited by the elemental quality of their food, which could affect, in turn, the structure of consumer communities and even alter key ecosystem processes. 2. In streams and in the littoral zone of shallow lakes, periphyton is an important food resource for benthic animals. Studying the elemental composition of periphyton may help us to understand food‐web structure, and any reciprocal effect of this structure on periphyton stoichiometry. 3. To understand how alterations in the food‐web structure affect the elemental composition of periphyton in a eutrophic lake, we carried out a long‐term experiment (14 months) in large‐scale mesocosms (40 m3), in which we manipulated food‐web structure, and which were dominated either by planktivorous fish (Rutilus rutilus) or herbivorous invertebrates (without fish). Periphyton was sampled monthly at three depths (0.5, 1.5 and 2.5 m) to determine its biomass and elemental composition (C/N/P ratio). Food‐web structure, physical and chemical parameters were monitored throughout the experiment. 4. Fish had indirect positive effect on periphyton biomass, leading to twofold higher levels than in herbivore‐dominated mesocosms. This result was probably due to control of benthic consumers by fish, suggesting a strong top–down control on periphyton by their consumers in fishless enclosures. 5. The elemental ratios C/P and C/N were lower in deep water in both treatments, mainly mediated by light availability, in accordance with the light/nutrient ratio hypothesis. These ratios were also lower in fishless treatments, probably due to increases in inorganic nutrient availability and grazing pressure in herbivore‐dominated systems. During winter, periphyton elemental composition was similar in both treatments, and was unrelated to inorganic nutrient availability. 6. These results indicate that any alteration of food‐web structure in lakes, such as in biomanipulation experiments, is likely to modify both the biomass and elemental quality of periphyton. Resultant effects on the consumers of periphyton and macrophytes could play a key role in the success of biomanipulations and should be taken into account in further studies.  相似文献   

4.
Fish introduction is a major threat to alpine lake biota leading to the loss of native species and to the degeneration of natural food-webs. This study provides an extensive investigation on the impact of the introduced fish Salvelinus fontinalis on the native communities of alpine lakes in the Gran Paradiso National Park. We compared the macroinvertebrate and zooplankton communities of six stocked and nine fishless lakes with a repeated sampling approach during the summers 2006–2009. The impact of fish presence on alpine lake fauna is often mediated by the strong seasonality governing these ecosystems, and it dramatically affects the faunal assemblage of littoral macroinvertebrates and the size, structure, and composition of the pelagic zooplankton community with a strong selective predation of the more visible taxa. Direct ecological impacts include a decrease or extinction of non-burrower macroinvertebrates and of large zooplankton species, while small zooplankton species and burrower macroinvertebrates were indirectly advantaged by fish presence. Due to the existence of a compensation between rotifers and crustaceans, fish presence does not affect total zooplankton biomass and diversity even if fish are a factor of ecological exclusion for large crustaceans. These compensatory mechanisms are a key process surrounding the impact of introduced fish in alpine lakes.  相似文献   

5.
The responses of nutrients, water transparency, zooplankton and phytoplankton to a gradient of silver carp biomass were assessed using enclosure methods. The gradient of four silver carp biomass levels was set as follows: 0, 116, 176 and 316 g m—2. Nutrients did not show any statistically significant differences among the treatments. An outburst of Daphnia only occurred in fishless enclosures where phytoplankton biomass was the lowest and water clarity significantly increased. While among fish enclosures, the small‐sized Moina micrura dominated throughout the experiment and both zooplankton and phytoplankton biomasses decreased with increased fish biomass. No large colonial cyanobacterial blooms occurred in the fishless enclosures as predicted. This might be due to low water temperature, short experiment time and the occurrence of large bodied Daphnia in our experiment. Cryptophyta was the most dominant group in most of the enclosures and the lake water throughout the experiment. The fishless enclosure had much lower proportion of Cyanophyta but higher proportion of Trachelomonas sp.  相似文献   

6.
1. Two enclosure experiments were carried out in Laguna Bufeos, a neotropical várzea lake located in the floodplain of River Ichilo (Bolivia). The experiments aimed (i) to assess the relative importance of bottom‐up and top‐down control on the plankton community, (ii) to assess the relative impact of direct and indirect effects of planktivorous fish on the zooplankton, and (iii) to attempt to identify the mechanisms responsible for these effects. 2. During the first experiment, bottom‐up control seemed to dominate the planktonic food web. Compared with fishless enclosures, oxygen concentrations, chlorophyll a levels and the population densities of all cladoceran zooplankton taxa increased in enclosures with fish. Birth rates of Moina minuta, the dominant taxon, were substantially higher in the presence than in the absence of fish, whereas death rates did not differ between treatments. These results are the first to suggest that the positive effects of fish on crustacean zooplankton via effects on nutrient cycling and the enhancement of primary production can compensate for losses because of fish‐related mortality. 3. During the second experiment, the direction of control appeared to vary between trophic levels: the phytoplankton appeared to be bottom‐up controlled whereas the zooplankton was mainly top‐down controlled. Chlorophyll a concentrations were enhanced by both fish and nutrient additions. The majority of the zooplankton taxa were reduced by the presence of fish. Birth rates of most cladoceran taxa did not differ between treatments, whereas death rates were higher in the enclosures with fish than in the fishless enclosures. Bosminopsis deitersi reached higher densities in the presence of fish, probably because of a release from predation by Chaoborus. 4. We convincingly showed strong deviations from trophic cascade‐based expectations, supporting the idea that trophic cascades may be weak in tropical lakes.  相似文献   

7.
We analyzed the effects of planktivorous Holeshestes heterodon Eigenmann (Characidae) predation on the plankton community of a small subtropical reservoir, using four enclosures (volume about 17.5 m3), open to the sediment, established in the littoral zone. Two enclosures were stocked with fish (mean TL 5.7 cm), at a density of about 4–5 fish m–3 (approx. 8 g m–3), whereas two remained fishless. The experiment lasted a little longer than one month. In the fish enclosures, most Crustacea and Chaoborus larvae remained scarce, probably as a result of visually selective fish predation. In both fishless enclosures, Chaoborus larvae became abundant. However, in only one of these did large individuals become relatively numerous; this discrepancy in the demographic structure of the Chaoborus populations between the two fishless enclosures is unexplained. Only in the fishless enclosure without appreciable numbers of large Chaoborus did densities of Crustacea increase greatly. It is suggested that in the enclosure containing large Chaoborus individuals, crustacean populations were prevented from developing due to predation pressure, while the small Chaoborus larvae of the other enclosure could not readily consume these prey. Rotifers were low in abundance in the absence of fish, probably as a consequence of Chaoborus predation. Phytoplankton density increased in all four enclosures, due probably to the lack of water flow. Only in the fishless enclosure with high densities of crustaceans did phytoplankton abundance decrease markedly at the end of the experiment, perhaps because of grazing losses.  相似文献   

8.
Bag-type enclosures (75 m3) with bottom sheets and tube-type enclosures (105 m3) open to the bottom sediment were stocked with exotic whitefish (Coregonus lavaretus maraena) to study their predation effects on the plankton community. The fish fed mainly on adult chironomids during the period of their emergence (earlier part of the experimental period). Thereafter, the food preference was shifted to larvae of chironomids and crustacean zooplankters. The predation effects on the plankton community were not evident in the bag-type enclosures where zooplankton densities were consistently low. The fish reduced the crustacean populations composed ofBosmina fatalis, B. longirostris andCyclops vicinus in the tube-type enclosures where the prey density was high (above ca. 50 individuals 1−1). The results suggested that the intensity of predation depended on the prey density. Rotifers increased in the fish enclosure, probably becauseCoregonus reduced the predation pressure byCyclops vicinus on rotifers and allowed the latter to increase. In the fish enclosures, no marked changes in species composition were observed. Zooplankton predated by the fish seemed to be distributed near the walls of the enclosures. Problems of enclosure experiments for examining the effects of fish predation on pelagic zooplankton communities are discussed.  相似文献   

9.
Fish predators, food availability and diel vertical migration in Daphnia   总被引:1,自引:0,他引:1  
Diel vertical migration of zooplankton is a highly variableand complex behaviour which apparently cannot be explained byany single factor. We determined the relative importance offish predation, food availability and water depth in shapingthe migratory behaviour of Daphnia. A modified 2x2x2 factorialexperiment provided two levels of fish density (present/absent),food availability (ambient/high) and depth (4–10 m); shallowtreatments with fish were excluded. Triplicate 1.2 m diameterenclosures for each of the six treatments were held in an 18unit array in Peter Lake, Gogebic Co., MI, USA. Repeated measuresANOVA identified significant trends in daphnid density, migrationand fitness (determined by lipid-ovary-egg index, LOE) as wellas in chlorophyll a content of the water column for part ofa 4-week experiment in July 1988. In deep enclosures with fish,Daphnia performed significantly more intense migrations thanin fishless enclosures, save those in fishless ambient-foodenclosures. Daphnia in deep fishless enclosures without abundantfood at depth performed significantly reduced migrations. DaphnidLOE index was significantly influenced only by food content.Our results were consistent with the predator-avoidance hypothesisas well as with observations of greatest migrations where largevertical differences in food abundance exist. They support ahierarchical view of vertical migration, with presence of fishthe primary factor, and food availability the secondary factor.  相似文献   

10.
1. The influence of underyearling (0+) fish on planktonic algal biomass and composition was examined during June–August in eight large enclosures (40 m3). Averaged for the entire period, Daphnia densities, transparency and phosphate concentrations were significantly higher ( P < 0.05) and chlorophyll a values significantly lower in fishless controls than in enclosures with fish (bleak ( Alburnus alburnus ), roach ( Rutilus rutilus ) or perch ( Perca fluviatilis )).
2. Enclosures without fish demonstrated a more heterogeneous algal community structure than enclosures with fish. Desmidiales and dinoflagellates were more abundant in controls, whereas green algae dominated the phytoplankton community in enclosures with fish. Larger grazing-resistant algae occurred most frequently in enclosures without fish.
3. The importance of cascading trophic interactions was demonstrated even under strong eutrophic conditions. The strongest effects on Daphnia densities, phytoplankton biomass and nutrients were observed in enclosures with perch, with weaker effects in enclosures with cyprinids. Differences in initial fish size and species accounted for the top-down effects observed. The results of this study emphasize the importance of 0+ perch as a key predator in structuring the plankton community in lakes.  相似文献   

11.
Top-down effects of underyearling fish on a phytoplankton community   总被引:2,自引:0,他引:2  
1. The influence of underyearling (0+) fish on planktonic algal biomass and composition was examined during June–August in eight large enclosures (40 m3). Averaged for the entire period, Daphnia densities, transparency and phosphate concentrations were significantly higher ( P < 0.05) and chlorophyll a values significantly lower in fishless controls than in enclosures with fish (bleak ( Alburnus alburnus ), roach ( Rutilus rutilus ) or perch ( Perca fluviatilis )).
2. Enclosures without fish demonstrated a more heterogeneous algal community structure than enclosures with fish. Desmidiales and dinoflagellates were more abundant in controls, whereas green algae dominated the phytoplankton community in enclosures with fish. Larger grazing-resistant algae occurred most frequently in enclosures without fish.
3. The importance of cascading trophic interactions was demonstrated even under strong eutrophic conditions. The strongest effects on Daphnia densities, phytoplankton biomass and nutrients were observed in enclosures with perch, with weaker effects in enclosures with cyprinids. Differences in initial fish size and species accounted for the top-down effects observed. The results of this study emphasize the importance of 0+ perch as a key predator in structuring the plankton community in lakes.  相似文献   

12.
Zooplankton are a functionally important but poorly studied component of western boreal forest (WBF) wetland ecosystems. To characterize patterns in zooplankton abundance and composition an exploratory study of 24 shallow-water wetlands in northern Alberta, Canada was carried out over the summers of 2001 and 2002. Results suggest zooplankton communities in WBF wetlands tend to exist as: (1) small-cladoceran dominated communities, (2) larger sized cladoceran (e.g. Daphnia) dominated communities, or (3) communities composed primarily of rotifers and/or other crustacean zooplankton. The presence/absence of brook stickleback (Culea inconstans) was the factor most strongly linked to zooplankton structure with small cladocerans tending to dominate in wetlands with stickleback. In fishless wetlands, communities dominated by medium-large sized cladocerans tended to correspond with low-chlorophyll/high-submerged aquatic vegetation (SAV) conditions. Conversely, communities composed of rotifers and other crustaceans were associated with high-chlorophyll/low-SAV states. Macro-invertebrate predator abundance was not strongly linked to patterns in zooplankton composition suggesting macro-invertebrate predation is not a significant factor influencing zooplankton structure in fishless wetlands. Results suggest activities that spread stickleback (e.g. ditching) or inhibit development of macrophyte-dominated/clear-water conditions (e.g. nutrient loading) may seriously alter the zooplankton community structure, and thereby the functional ecology, of these valuable wetland ecosystems.  相似文献   

13.
Two short-term (4–5 week) sets of enclosure experiments were conducted during winter periods (1982, 1983) in Americana Reservoir near Sao Paulo to test effects of fish predation reducing grazing pressure by large cladoceran zooplankton (mainlyDaphnia gessneri) on phytoplankton density, cell size distribution, biomass, species composition and richness. Two enclosures were stocked with the zooplanktivorous characin fishAstyanax whereas two others remained fishless during each set of experiments. Within two weeks or less, phytoplankton cell density and biomass were significantly reduced in the fishless enclosures, particularly in the small cell size (< 15 µm) fraction. Changes also occurred in species composition and richness. These shifts generally were maintained or intensified during the course of the experiments.  相似文献   

14.
We examined the impacts of moderate gradient silver carp biomass (five levels from 0 to 36 g.m-3, i.e. about 0-792 kg.ha-1) on zooplankton communities of the eutrophic Villerest reservoir (France). During our mesocosm experiment changes in zooplankton assemblages were dependent on silver carp biomass. In the fishless and low fish biomass treatments, zooplankton abundance increased through time, owing to a peak in cladoceran density, but decreased (mainly cladocerans) at highest fish biomass. Copepods and rotifers were less affected at the highest fish biomass and dominated zooplankton communities. We highlighted that the presence of high silver carp biomass could lead to changes in phytoplankton assemblage via the impact on herbivorous zooplankton. Since silver carp efficiently graze on particles > 20 microns, the suppression of herbivorous cladocerans could result in an increase in small size algae (< 20 microns) abundance since these species would be released from grazers as well as competitors (large algae grazed by silver carp) and nutrients levels would be enhanced by fish internal loading. Our results showed that the use of low silver carp biomass (< 200 kg.ha-1) would allow us to minimize these negative effects.  相似文献   

15.
16.
Williams  Adrian E.  Moss  Brian 《Hydrobiologia》2003,491(1-3):331-346
Thirty-six enclosures, surface area 4 m2, were placed in Little Mere, a shallow fertile lake in Cheshire, U.K. The effects of different fish species (common carp, common bream, tench and roach) of zooplanktivorous size, and their biomass (0, 200 and 700 kg ha–1) on water chemistry, zooplankton and phytoplankton communities were investigated. Fish biomass had a strong effect on mean zooplankton size and abundance. When fish biomass rose, larger zooplankters were replaced by more numerous smaller zooplankters. Consequently phytoplankton abundance rose in the presence of higher densities of zooplanktivorous fish, as zooplankton grazing was reduced. Fish species were also significant in determining zooplankton community size structure. In enclosures with bream there were significantly greater densities of small zooplankters than in enclosures stocked with either carp, tench and, in part, roach. When carp or roach were present, the phytoplankton had a greater abundance of Cyanophyta than when bream or tench were present. Whilst top-down effects of fish predation controlled the size partitioning of the zooplankton community, this, in turn apparently controlled the bottom-up regeneration of nutrients for the phytoplankton community. At the zooplankton–phytoplankton interface, both top-down and bottom-up processes were entwined in a reciprocal feedback mechanism with the extent and direction of that relationship altered by changes in fish species. This has consequences for the way that top-down and bottom-up processes are generalised.  相似文献   

17.
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish‐containing lakes (n = 18) of similar size, location and maximum depth. We used non‐metric multidimensional scaling to assess differences in community structure and t‐tests for taxon‐specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish‐containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish‐containing lakes, especially taxa that are large, active and free‐swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation.  相似文献   

18.
19.
Although in situ sediment capping is frequently used to reduce internal loading of contaminants and nutrients, post-application assessment rarely includes the potential undesirable short-term effects on plankton species composition. We hypothesised that a modified zeolite (Z2G1) application as a sediment capping agent in Lake Okaro, New Zealand, could cause significant undesirable shifts in species composition of both zooplankton and phytoplankton due to burial of resting stages or interference with feeding for the zooplankton. Alternatively, we predicted that the capping agent might have no effect due to, for example, the coarse grain size of the material (1–3 mm). We used multidimensional scaling (MDS) and analysis of similarity (ANOSIM) to identify any adverse effects of Z2G1 on zooplankton and phytoplankton species composition (i.e. shifts in community structure, including species loss) by comparing the community structure before and after the Z2G1 application. We found no significant differences in species composition before and after the Z2G1 application at the depths investigated (surface and 9 m). However, all of the analyses showed statistically significant differences among seasons, indicating seasonal variations in plankton composition far outweigh those that may have resulted from the Z2G1 application. Coarse particle size, low dose rate and a restricted area where the sediment capping agent was applied were considered to be the factors limiting potential adverse effects on plankton species. Considerations of finer-grained material to increase coverage and efficacy of phosphorus adsorption require assessment for their effects on zooplankton, however, and a direct mode of application into the hypolimnion is recommended to minimise effects on zooplankton and phytoplankton communities.  相似文献   

20.
1. Air temperature will probably have pronounced effects on the composition of plankton communities in northern lake ecosystems, either via indirect effects on the export of essential elements from catchments or through direct effects of water temperature and the ice‐free period on the behaviour of planktonic organisms. 2. We assessed the role of temperature by comparing planktonic communities in 15 lakes along a 6 °C air temperature gradient in subarctic Sweden. 3. We found that the biomass of phytoplankton, bacterioplankton and the total planktonic biomass were positively related to air temperature, probably as a result of climatic controls on the export of nitrogen from the catchment (which affects phytoplankton biomass) and dissolved organic carbon (affecting bacterioplankton biomass). 4. The structure of the zooplankton community, and top down effects on phytoplankton, were apparently not related to temperature but mainly to trophic interactions ultimately dependent on the presence of fish in the lakes. 5. Our results suggest that air temperature regimes and long‐term warming can have strong effects on the planktonic biomass in high latitude lakes. Effects of temperature on the structure of the planktonic community might be less evident unless warming permits the invasion of fish into previous fishless lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号