首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic peptides mimic the assembly of transmembrane glycoproteins   总被引:17,自引:0,他引:17  
The composition of the intramembranous domains of many receptors are remarkably uniform, yet there is evidence that many transmembrane proteins associate together to form specific noncovalent homo- or heterocomplexes within the membrane. We have synthesized peptides corresponding to transmembrane domains of glycophorin A, glycophorin C, and the interleukin 2-receptor Tac antigen to study the interactions between transmembrane domains in vitro. Synthetic transmembrane glycophorin A peptide formed a complex with native glycophorin and glycoproteins of erythrocyte and K562 cell membranes that was reversible, specific, and could be demonstrated in a natural bilayer system in the absence of detergents. Synthetic glycophorin C and interleukin 2-receptor Tac antigen transmembrane peptides, although similar in amino acid composition, did not interact with glycophorin and did not inhibit the binding of the synthetic glycophorin A transmembrane peptide to native glycophorin. It is proposed that the transmembrane segments of receptor proteins contain not only the structural information necessary for insertion and anchoring but specific binding sites that mediate interactions between transmembrane glycoproteins.  相似文献   

2.
The GXXXG motif is a frequently occurring sequence of residues that is known to favor helix-helix interactions in membrane proteins. Here we show that the GXXXG motif is also prevalent in soluble proteins whose structures have been determined. Some 152 proteins from a non-redundant PDB set contain at least one alpha-helix with the GXXXG motif, 41 +/- 9% more than expected if glycine residues were uniformly distributed in those alpha-helices. More than 50% of the GXXXG-containing alpha-helices participate in helix-helix interactions. In fact, 26 of those helix-helix interactions are structurally similar to the helix-helix interaction of the glycophorin A dimer, where two transmembrane helices associate to form a dimer stabilized by the GXXXG motif. As for the glycophorin A structure, we find backbone-to-backbone atomic contacts of the C alpha-H...O type in each of these 26 helix-helix interactions that display the stereochemical hallmarks of hydrogen bond formation. These glycophorin A-like helix-helix interactions are enriched in the general set of helix-helix interactions containing the GXXXG motif, suggesting that the inferred C alpha-H...O hydrogen bonds stabilize the helix-helix interactions. In addition to the GXXXG motif, some 808 proteins from the non-redundant PDB set contain at least one alpha-helix with the AXXXA motif (30 +/- 3% greater than expected). Both the GXXXG and AXXXA motifs occur frequently in predicted alpha-helices from 24 fully sequenced genomes. Occurrence of the AXXXA motif is enhanced to a greater extent in thermophiles than in mesophiles, suggesting that helical interaction based on the AXXXA motif may be a common mechanism of thermostability in protein structures. We conclude that the GXXXG sequence motif stabilizes helix-helix interactions in proteins, and that the AXXXA sequence motif also stabilizes the folded state of proteins.  相似文献   

3.
Polar residues in transmembrane alpha-helices may strongly influence the folding or association of integral membrane proteins. To test whether a motif that promotes helix association in a soluble protein could do the same within a membrane, we designed a model transmembrane helix based on the GCN4 leucine zipper. We found in both detergent micelles and biological membranes that helix association is driven strongly by asparagine, independent of the rest of the hydrophobic leucine and/or valine sequence. Hydrogen bonding between membrane helices gives stronger associations than the packing of surfaces in glycophorin A helices, creating an opportunity to stabilize structures, but also implying a danger that non-specific interactions might occur. Thus, membrane proteins may fold to avoid exposure of strongly hydrogen bonding groups at their lipid exposed surfaces.  相似文献   

4.
5.
Melnyk RA  Partridge AW  Deber CM 《Biochemistry》2001,40(37):11106-11113
Biophysical study of the transmembrane (TM) domains of integral membrane proteins has traditionally been impeded by their hydrophobic nature. As a result, an understanding of the details of protein-protein interactions within membranes is often lacking. We have demonstrated previously that model TM segments with flanking cationic residues spontaneously fold into alpha-helices upon insertion into membrane-mimetic environments. Here, we extend these studies to investigate whether such constructs consisting of TM helices from biological systems retain their native secondary structures and oligomeric states. Single-spanning TM domains from the epidermal growth factor receptor (EGFR), glycophorin A (GPA), and the influenza A virus M2 ion channel (M2) were designed and synthesized with three to four lysine residues at both N- and C-termini. Each construct was shown to adopt an alpha-helical conformation upon insertion into sodium dodecyl sulfate micelles. Furthermore, micelle-inserted TM segments associated on SDS-PAGE gels according to their respective native-like oligomeric states: EGFR was monomeric, GPA was dimeric, and M2 was tetrameric. This approach was then used to investigate whether one or both of the TM segments (Tar-1 and Tar-2) from the Escherichia coli aspartate receptor were responsible for its homodimeric nature. Our results showed that Tar-1 formed SDS-resistant homodimers, while Tar-2 was monomeric. Furthermore, no heterooligomerization between Tar-1 and Tar-2 was detected, implicating the Tar-1 helix as the oligomeric determinant for the Tar protein. The overall results indicate that this approach can be used to elucidate the details of TM domain folding for both single-spanning and multispanning membrane proteins.  相似文献   

6.
《Biophysical journal》2022,121(11):2069-2077
In the erythrocyte membrane, the interactions between glycophorin A (GPA) and Band 3 are associated strongly with the biological function of the membrane and several blood disorders. In this work, using coarse-grained molecular-dynamics simulations, we systematically investigate the effects of cholesterol and phosphatidylinositol-4,5-bisphosphate (PIP2) on the interactions of GPA with Band 3 in the model erythrocyte membranes. We examine the dynamics of the interactions of GPA with Band 3 in different lipid bilayers on the microsecond time scale and calculate the binding free energy between GPA and Band 3. The results indicate that cholesterols thermodynamically favor the binding of GPA to Band 3 by increasing the thickness of the lipid bilayer and by producing an effective attraction between the proteins due to the depletion effect. Cholesterols also slow the kinetics of the binding of GPA to Band 3 by reducing the lateral mobility of the lipids and proteins and may influence the binding sites between the proteins. The anionic PIP2 lipids prefer binding to the surface of the proteins through electrostatic attraction between the PIP2 headgroup and the positively charged residues on the protein surface. Ions in the solvent facilitate PIP2 aggregation, which promotes the binding of GPA to Band 3.  相似文献   

7.
Liu W  Crocker E  Zhang W  Elliott JI  Luy B  Li H  Aimoto S  Smith SO 《Biochemistry》2005,44(9):3591-3597
Amyloid fibrils associated with diseases such as Alzheimer's are often derived from the transmembrane helices of membrane proteins. It is known that the fibrils have a cross-beta-sheet structure where main chain hydrogen bonding occurs between beta-strands in the direction of the fibril axis. However, the structural basis for how the membrane-spanning helix is converted into a beta-sheet or how protofibrils associate into fibrils is not known. Here, we use a model peptide corresponding to a portion of the single transmembrane helix of glycophorin A to investigate the structural role of glycine in amyloid-like fibrils formed from transmembrane helices. Glycophorin A contains a GxxxG motif that is found in many transmembrane sequences including that of the amyloid precursor protein and prion protein. We propose that glycine, which mediates helix interactions in membrane proteins, also provides key packing motifs when it occurs in beta-sheets. We show that glycines in the glycophorin A transmembrane helix promote extended beta-strand formation when the helix partitions into aqueous environments and stabilize the packing of beta-sheets in the formation of amyloid-like fibrils. We demonstrate that fibrillization can be disrupted with a new class of inhibitors that target the molecular grooves created by glycine.  相似文献   

8.
Solution structures of a series of consensus sequence peptides with N- and C-terminal capping interactions have been determined by 2-D nuclear magnetic resonance spectroscopy and a simulated annealing strategy. All peptides are found to be stabilized by a hydrophobic interaction and a capping box structure (SXXE) at the N-terminus whereas several different capping motifs are discerned near the peptide C-terminus. Among these, the asparagine side chain-backbone main chain (i, i-4) capping structure is most stabilizing and highly populated in the simulated annealing calculation. A glycine alphaL capping motif stabilizes the peptide terminus, which otherwise tends to fray, but this is occupied only a fraction of the time in the trial structures determined. Our experimental search over several models for a second type of C-terminal capping structure, the so-called 'Schellman motif', which is seen in native proteins, is unsuccessful, indicating this structural element contributes less to oligopeptide stability in solution and most probably populates only transiently.  相似文献   

9.
Fusion between cell and virus membranes mediated by gp41 initiates the life cycle of human immunodeficiency virus type 1. In contrast to the many studies that have elucidated the structure-function relationship of the ectodomain, the study of the membrane-spanning domain (MSD) has been rather limited. In particular, the role that the MSD's specific amino acid sequences may have in membrane fusion as well as other gp41 functions is not well understood. The MSD of gp41 contains well-conserved glycine residues that form the GXXXG motif (G, glycine; X, other amino acid residues), a motif often found at the helix-helix interface of membrane spanning alpha-helices. Here we examined the role that the specific amino acid sequence of the gp41 MSD has in gp41 function, particularly in membrane fusion, by making two types of MSD mutants: (i) glycine substitution mutants in which glycine residues of the MSD were mutated to alanine or leucine residues, and (ii) replacement mutants in which the entire MSD was replaced with one derived from glycophorin A or from vesicular stomatitis virus G. The substitution of glycines did not affect gp41 function. MSD-replacement mutants, however, showed severely impaired fusion activity. The assay using the Env expression vector revealed defects in membrane fusion after CD4 binding steps in the MSD-replacement mutants. In addition, the change in Env processing was noted for MSD-replacement mutants. These results suggest that the MSD of gp41 has a relatively wide but not unlimited tolerance for mutations and plays a critical role in membrane fusion as well as in other steps of Env biogenesis.  相似文献   

10.
A fast and inexpensive strategy for the identification of peptide ligands by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of peptide beads screened from one bead-one peptide combinatorial libraries is herein described. Streptavidin was used as the model protein. A combinatorial library of 6561 peptides was synthesized on ChemMatrix resin by the divide-couple-recombine method. 4-Hydroxymethylbenzoic acid was used as the linker and five residues of Gly were incorporated at the C termini to increase the final peptide molecular weight. Positive control peptides with the HPQ motif and negative control peptides without the HPQ motif evidenced that the linker and the five residues of Gly have neither impaired the specific binding nor facilitated unspecific binding. After screening the library, positive beads were isolated and washed with 8M guanidine hydrochloride. The beads were sliced into two or four pieces, deposited onto the stainless steel MALDI sample plate, and treated with ammonia vapor to release the peptides. In addition, 26 beads picked at random from the library were subjected to the same treatment. All samples were analyzed by MALDI-TOF-MS and the peptides were unambiguously identified with very good reproducibility between the bead pieces, thus evidencing the good homogeneity of the bead. All sequences obtained from the screening contained HPQ.  相似文献   

11.
Synaptic differentiation is normally "induced" by regulatory signals that are exchanged only at close contacts between neurites and their predetermined target cells. These signals can, however, be mimicked by contact of either cell with some kinds of polymer microbeads. To find what bead action is responsible for this mimicry, we compared the effects of active and inert microbeads on Xenopus muscle cells developing in culture and on glass-adsorbed films of laminin or fibronectin. Our results show that inductive bioactivity is a property of native polystyrene microbeads that (a) is not dependent merely on bead-muscle adhesion, (b) can be eliminated simply by exposing the beads to inert serum proteins, and (c) correlates closely with the ability of some beads to desorb proteins from adjacent surfaces. Quasi-synaptic differentiation of the muscle surface thus seems to be triggered by the focal removal of peripheral cell surface components, rather than by direct bead interactions with membrane receptors or ion channels or their gradual acquisition of endogenous regulatory substances. Since nerve-muscle interaction also causes an elimination of extracellular matrix proteins from the muscle surface, very early in synapse development, we consider the possibility that the extracellular degradation of peripheral surface components contributes to the transmission of inductive positional signals during synaptogenesis.  相似文献   

12.
Studies that focus on packing interactions between transmembrane (TM) helices in membrane proteins would greatly benefit from the ability to investigate their association and packing interactions in multi-spanning TM domains. However, the production, purification, and characterization of such units have been impeded by their high intrinsic hydrophobicity. We describe the polar tagging approach to biophysical analysis of TM segment peptides, where incorporation of polar residues of suitable type and number at one or both peptide N- and C-termini can serve to counterbalance the apolar nature of a native TM segment, and render it aqueous-soluble. Using the native TM sequences of the human erythrocyte protein glycophorin A (GpA) and bacteriophage M13 major coat protein (MCP), properties of tags such as Lys, His, Asp, sarcosine, and Pro-Gly are evaluated, and general procedures for tagging a given TM segment are presented. Gel-shift assays on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) establish that various tagged GpA TM segments spontaneously insert into micellar membranes, and exhibit native TM dimeric states. Sedimentation equilibrium analytical centrifugation is used to confirm that Lys-tagged GpA peptides retain the native dimer state. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy studies on Lys-tagged TM MCP peptides selectively enriched with N-15 illustrate the usefulness of this system for evaluating monomer-dimer equilibria in micelle environments. The overall results suggest that polar-tagging of hydrophobic (TM) peptides approach constitutes a valuable tool for the study of protein-protein interactions in membranes.  相似文献   

13.
The membrane-associated proteinase of Streptococcus lactis strain 3 hydrolyzed αs, 1-casein B into 11 peptide fragments. Eight of the 11 peptides were purified and partially characterized. Each peptide contained several, but not all six, essential amino acids required for growth. The culture was able to utilize one peptide as the sole source for the essential amino acid leucine. Leucine, serine, valine, and glycine were found to be NH2-terminal residues. Two of the peptides were phosphopeptides. The data support the functional role of the membrane-associated proteinase as being involved in the initial breakdown of proteins to peptides.  相似文献   

14.
Src homology 2 (SH2) domains mediate protein-protein interactions by recognizing short phosphotyrosyl (pY) peptide motifs in their partner proteins. Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of pY proteins, counteracting the protein tyrosine kinases. Both types of proteins exhibit primary sequence specificity, which plays at least a partial role in dictating their physiological interacting partners or substrates. A combinatorial peptide library method has been developed to systematically assess the sequence specificity of SH2 domains and PTPs. A "one-bead-one-compound" pY peptide library is synthesized on 90-microm TentaGel beads and screened against an SH2 domain or PTP of interest for binding or catalysis. The beads that carry the tightest binding sequences against the SH2 domain or the most efficient substrates of the PTP are selected by an enzyme-linked assay and individually sequenced by a partial Edman degradation/mass spectrometry technique. The combinatorial method has been applied to determine the sequence specificity of 8 SH2 domains from Src and Csk kinases, adaptor protein Grb2, and phosphatases SHP-1, SHP-2, and SHIP1 and a prototypical PTP, PTP1B.  相似文献   

15.
Variant semisynthetic ribonuclease-S complexes were characterized in which the helical glutamic acid 9 residue was replaced by either leucine or glycine. The Leu-9 and Gly-9 synthetic peptides, corresponding otherwise to residues 1 through 15 of bovine pancreatic ribonuclease, were studied with respect to the ability to bind, and generate enzymic activity, with the complementary native protein fragment containing residues 21 through 124 of ribonuclease (RNAase-S-(21–124)). Both the Leu and Gly peptides bind to the RNAase-S-(21–124) to yield complexes with catalytic properties similar to those obtained with the Glu-9-containing peptide of residues 1 through 20 of ribonuclease (RNAase-S-(1–20)). However, whereas the binding affinity of Leu peptide to RNAase-S-(21–124) is only a factor of three less than that for RNAase-S-(1–20), that for Gly peptide is about 20-fold less than that for RNAase-S-(1–20). The stronger binding of Leu than Gly peptide corresponds to the observed propensity of leucine but not glycine for the α-helical conformation in globular proteins.In spite of the weakened affinity of the Gly peptide for RNAase-S-(21–124), it is essentially fully as capable as the Leu-9 and RNAase-S-(1–20) peptides in directing the re-formation of correct disulfide-containing conformation of RNAase-S-(21–124) after disulfide randomization of the latter.  相似文献   

16.
The final, structure-determining step in the folding of membrane proteins involves the coalescence of preformed transmembrane helices to form the native tertiary structure. Here, we review recent studies on small peptide and protein systems that are providing quantitative data on the interactions that drive this process. Gel electrophoresis, analytical ultracentrifugation, and fluorescence resonance energy transfer (FRET) are useful methods for examining the assembly of homo-oligomeric transmembrane helical proteins. These methods have been used to study the assembly of the M2 proton channel from influenza A virus, glycophorin, phospholamban, and several designed membrane proteins-all of which have a single transmembrane helix that is sufficient for association into a transmembrane helical bundle. These systems are being studied to determine the relative thermodynamic contributions of van der Waals interactions, conformational entropy, and polar interactions in the stabilization of membrane proteins. Although the database of thermodynamic information is not yet large, a few generalities are beginning to emerge concerning the energetic differences between membrane and water-soluble proteins: the packing of apolar side chains in the interior of helical membrane proteins plays a smaller, but nevertheless significant, role in stabilizing their structure. Polar, hydrogen-bonded interactions occur less frequently, but, nevertheless, they often provide a strong driving force for folding helix-helix pairs in membrane proteins. These studies are laying the groundwork for the design of sequence motifs that dictate the association of membrane helices.  相似文献   

17.
In this report we examine the primary sequence of a variant glycophorin obtained from erythrocytes of an individual who exhibits an unusual MNSs blood group phenotype. We show that this protein is a hybrid molecule constructed from sequences of alpha- and delta-glycophorins (glycophorins A and B) in a alpha-delta arrangement. Serological typing revealed that the donor's phenotype was M+N+S+s+U+; yet his erythrocytes reacted with some but not all examples of anti-S antisera. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a variant glycophorin band, and immunoblotting and reaction with N-glycanase suggested that its amino terminus resembled that of M-alpha-glycophorin but that its carboxyl terminus did not. A preparation highly enriched in the variant was obtained and used to generate peptide fragments for sequencing. The sequence revealed that the variant was a hybrid molecule whose amino terminus corresponded to M-alpha-glycophorin and whose carboxyl terminus corresponded to S-delta-glycophorin. CNBr cleavage of the variant glycophorin yielded four peptides. The sequence of the amino-terminal CNBr peptide (residues 1-8) was identical to the amino-terminal octapeptide of M-alpha-glycophorin. The proceeding peptide (residues 9-61) contained a segment identical to residues 9-58 of alpha glycophorin, but its carboxyl-terminal sequence had the Gly-Glu-Met sequence from S-delta-glycophorin (residues 27-29). The other two peptides, insoluble in aqueous solutions, contained highly hydrophobic sequences, identical to residues 30-52 and 53-68 of delta-glycophorin. Sequences of overlapping peptides generated by trypsin and V8 protease confirmed the hybrid nature of the variant glycophorin: residues 1-58 were identical to residues 1-58 of M-alpha-glycophorin, and residues 59-100 were entirely identical to residues 27-68 of S-delta-glycophorin. The variant glycophorin is expected to have 4 additional residues at its carboxyl terminus that correspond to the carboxyl-terminal residues 69-72 of delta-glycophorin. The amino acid sequence arrangement of the variant alpha-delta-glycophorin is an exact reciprocal of that found in another hybrid glycophorin, Sta, that is a delta-alpha hybrid. We propose that the two hybrid glycophorins represent the two possible products resulting from a reciprocal recombination event.  相似文献   

18.
《Gene》1996,169(1):133-134
The calcium-binding protein, calmodulin (CaM), was used to screen a phage library displaying random peptides 26 amino acids (aa) in length. Twenty CaM-binding peptides were identified, 17 of which contained one of three consensus sequence motifs: + W-OλR, WRAAV or WRXXAAAL, where +, -, O,λ and X are positively charged, negatively charged, hydrophobic, leucine or valine, and any residue, respectively. The Trp residue in these motifs is located within 14 aa of the N-terminus of the displayed peptide. Previous studies [Dedman et al., J. Biol. Chem. 268 (1993) 23025–23030] using a library displaying random peptides 15 aa in length identified CaM-binding peptides which contained a Trp-Pro dipeptide motif. These results suggest that the type of CaM-binding motif identified can vary between different types of combinatorial peptides  相似文献   

19.
Side-to-side associations of transmembrane alpha-helices are integral components of the structure and function of helical membrane proteins. A fundamental unknown in the understanding of the chemical principles driving the lateral interactions between transmembrane alpha-helices is the balance of forces arising from the polypeptide sequence versus the hydrophobic solvent. To begin to address this question, a consideration of basic thermodynamic principles has been applied to assess the experimental free energy change associated with transmembrane helix dimerization in micelles. This analysis demonstrates the ability to partition the apparent free energy of transmembrane helix-helix association into two components. The first component is a statistical energy term, which arises from the fact that there are an unequal number of reactants and products. The second component is a standard state free energy change, which informs on the molecular details of the transmembrane helix self-association reaction. The advantage of separating these two energy terms arises from the fact that extrapolation to the standard state free energy change normalizes the statistical energy term so that it applies equivalently in all experimental systems. Accompanying experimental results for the glycophorin A transmembrane alpha-helix dimer measured in micelles are well described by these theoretical components assuming an ideal-dilute solution.  相似文献   

20.
Stereospecificity in protein-protein recognition and docking is an unchallenged dogma. Soluble proteins provide the main source of evidence for stereospecificity. In contrast, within the membrane little is known about the role of stereospecificity in the recognition process. Here, we have reassessed the stereospecificity of protein-protein recognition by testing whether it holds true for the well-defined glycophorin A (GPA) transmembrane domain in vivo. We found that the all-D amino acid GPA transmembrane domain and two all-D mutants specifically associated with an all-L GPA transmembrane domain, within the membrane milieu of Escherichia coli. Molecular dynamics techniques reveal a possible structural explanation to the observed interaction between all-D and all-L transmembrane domains. A very strong correlation was found between amino acid residues at the interface of both the all-L homodimer structure and the mixed L/D heterodimer structure, suggesting that the original interactions are conserved. The results suggest that GPA helix-helix recognition within the membrane is chirality-independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号