首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo.  相似文献   

4.
5.
Heckman JE  Lambert D  Burke JM 《Biochemistry》2005,44(11):4148-4156
The hammerhead ribozyme has been intensively studied for approximately 15 years, but its cleavage mechanism is not yet understood. Crystal structures reveal a Y-shaped molecule in which the cleavage site is not ideally aligned for an S(N)2 reaction and no RNA functional groups are positioned appropriately to perform the roles of acid and base or other functions in the catalysis. If the ribozyme folds to a more compact structure in the transition state, it probably does so only transiently. We have used photocrosslinking as a tool to trap hammerhead ribozyme-substrate complexes in various stages of folding. Results suggest that the two substrate residues flanking the cleavage site approach and stack upon two guanosines (G8 and G12) in domain 2, moving 10-15 A closer to domain 2 than they appear in the crystal structure. Most crosslinks obtained with the nucleotide analogues positioned in the ribozyme core are catalytically inactive; however, one cobalt(III) hexaammine-dependent crosslink of an unmodified ribozyme retains catalytic activity and confirms the close stacking of cleavage site residue C17 with nucleotide G8 in domain 2. These findings suggest that residues involved in the chemistry of hammerhead catalysis are likely located in that region containing G8 and G12.  相似文献   

6.
Hormes R  Sczakiel G 《Biochimie》2002,84(9):897-903
The structure and function of small complexes formed between trans-cleaving hammerhead ribozymes and their substrates are being intensely studied in vitro. Conversely, target strands for hammerhead ribozymes in living cells are usually much longer, and cleavage kinetics in vitro of long substrates are usually approximately 100-fold slower. However, on the mechanistic level, not much is known about the influence of substrate length on cleavage kinetics. Here, we describe the influence of the length of the substrate strand on cleavage kinetics in vitro of two trans-cleaving hammerhead ribozymes. Progressive extension of the 3' end of the substrate decreases cleavage kinetics in a length-dependent manner. A six-nucleotide protruding 3' end of helix I is related to a decrease of the cleavage rate by one order of magnitude. Extension of the 5' end of the substrate shows a more complex relationship of the length-related decrease of cleavage activity. Decreased cleavage activity can be compensated by increased magnesium concentrations. An explanation of this finding does not seem to include major influences of the extended substrate on the thermal stability or the global structural arrangement of the three double-strand helices of the hammerhead structure. We hypothesize that long-range influences between the termini of the substrate strand and the catalytic centre could be responsible for decreased cleavage rates.  相似文献   

7.
The hammerhead domain is one of the smallest known ribozymes. Like other ribozymes it catalyzes site-specific cleavage of a phosphodiester bond. The hammerhead ribozyme has been the subject of a vast number of biochemical and structural studies aimed at determining the structure and mechanism of cleavage. Recently crystallographic analysis has produced a structure for the hammerhead. As the hammerhead is capable of undergoing cleavage within the crystal, it would appear that the crystal structure is representative of the catalytically active solution structure. However, the crystal structure conflicts with much of the biochemical data and reveals a catalytic metal ion binding site expected to be of very low affinity. Clearly, additional studies are needed to reconcile the discrepancies and provide a clear understanding of the structure and mechanism of the hammerhead ribozyme. Here we demonstrate that a unique crosslink can be induced in the hammerhead with 2-thiocytidine or 4-thiouridine substitution at different locations within the conserved core. Generation of the same crosslink with different modifications at different positions suggests that the structure trapped by the crosslink may be relevant to the catalytically active solution structure of the hammerhead ribozyme. As this crosslink appears to be incompatible with the crystal structure, this provides yet another indication that the active solution and crystal structures may differ significantly.  相似文献   

8.
Self-cleaving transcripts of satellite DNA from the newt   总被引:28,自引:0,他引:28  
L M Epstein  J G Gall 《Cell》1987,48(3):535-543
  相似文献   

9.
Most researchers who intend to suppress a particular gene are interested primarily in the application of ribozyme technology rather than its mechanistic details. This article provides some background information and describes a straightforward strategy to generate and test a special design of a ribozyme: the asymmetric hammerhead ribozyme. This version of a hammerhead ribozyme carries at its 5' end the catalytic domain and at its 3' end a relatively long antisense flank that is complementary to the target RNA. Asymmetric hammerhead ribozymes can be constructed via polymerase chain reaction amplification, and rules are provided on how to select the DNA oligonucleotides required for this reaction. In addition to details on construction, we describe how to test asymmetric hammerhead ribozymes for association with the target RNA in vitro, so that RNA constructs can be selected and optimized for fast hybridization with their target RNA. This test can allow one to minimize association problems caused by the secondary structure of the target RNA. Additionally, we describe the in vitro cleavage assay and the determination of the cleavage rate constant. Testing for efficient cleavage is also a prerequisite for reliable and successful application of the technology. A carefully selected RNA will be more promising when eventually used for target suppression in living cells.  相似文献   

10.
The catalytic properties of the hammerhead ribozyme embedded in the (+) strand of the satellite tobacco ringspot viral genome are analyzed with the goal of obtaining the elemental rate constants of the cleavage (k(2)) and ligation (k(-)(2)) steps. Two different chimeras combining the sTRSV (+) hammerhead and the well-characterized hammerhead 16 were used to measure the cleavage rate constant (k(2)), the rate of approach to equilibrium (k(obs) = k(2) + k(-)(2)), and the fraction of full-length hammerhead at equilibrium (k(-)(2)/k(2) + k(-)(2)). When compared to minimal hammerheads that lack the recently discovered loop I-loop II interaction, an extended format hammerhead derived from sTRSV studied here shows at least a 20-fold faster k(2) and a 1300-fold faster k(-)(2) at 10 mM MgCl(2). However, the magnesium dependence of the cleavage rate is not significantly changed. Thus, the enhanced cleavage of this hammerhead observed in vivo is due to its higher intrinsic rate and not due to its tighter binding of magnesium ions. The faster k(-)(2) of this hammerhead suggests that ligation may be used to form circular RNA genomes. This in vitro system will be valuable for experiments directed at understanding the hammerhead mechanism and the role of the loop I-loop II interaction.  相似文献   

11.
Tissue-specific permutations of self-cleaving newt satellite-2 transcripts.   总被引:1,自引:0,他引:1  
L M Epstein  S R Coats 《Gene》1991,107(2):213-218
  相似文献   

12.
The 110 nt hammerhead ribozyme in the satellite RNA of cereal yellow dwarf virus-RPV (satRPV RNA) folds into an alternative conformation that inhibits self-cleavage. This alternative structure comprises a pseudoknot with base-pairing between loop (L1) and a single-stranded bulge (L2a), which are located in hammerhead stems I and II, respectively. Mutations that disrupt this base-pairing, or otherwise cause the ribozyme to more closely resemble a canonical hammerhead, greatly increase self-cleavage. In a more natural multimeric sequence context containing the full-length satRPV RNA and two copies of the hammerhead, wild-type RNA cleaves much more efficiently than in the 110 nt context. Mutations in the upstream hammerhead, including a knock-out in the catalytic core, affect cleavage at the downstream cleavage site, indicating that multimers of satRPV RNA cleave via a double hammerhead. The double hammerhead includes base-pairing between two copies of the L1 sequence which extends stem I. Disruption of L1-L1 base-pairing slows cleavage of the multimer. L1-L2a base-pairing is required for efficient replication of satRPV RNA in oat protoplasts. Mutations that affect self-cleavage of the multimer do not correlate with replication efficiency, indicating that the ability to self-cleave is not a primary determinant of replication. We present a replication model in which multimeric satRPV RNA folds into alternative conformations that cannot form in the monomer. One potential metastable intermediate conformation involves L1-L2a base-pairing that may facilitate formation of the double hammerhead. However, we conclude that L1-L2a also performs some other essential function in the satRPV RNA replication cycle, because the L1-L2a base-pairing is more important than efficient self-cleavage for replication.  相似文献   

13.
Chimeras of the well-characterized minimal hammerhead 16 and nine extended hammerheads derived from natural viroids and satellite RNAs were constructed with the goal of assessing whether their very different peripheral tertiary interactions modulate their catalytic properties. For each chimera, three different assays were used to determine the rate of cleavage and the fraction of full-length hammerhead at equilibrium and thereby deduce the elemental cleavage ( k 2) and ligation ( k -2) rate constants. The nine chimeras were all more active than minimal hammerheads and exhibited a very broad range of catalytic properties, with values of k 2 varying by 750-fold and k -2 by 100-fold. At least two of the hammerheads exhibited an altered dependence of k obs on magnesium concentration. Since much less catalytic diversity is observed among minimal hammerheads that lack the tertiary interactions, a possible role for the different tertiary interaction is to modulate the hammerhead cleavage properties in viroids. For example, differing hammerhead cleavage and ligation rates could affect the steady state concentrations of linear, circular, and polymeric genomes in infected cells.  相似文献   

14.
A self-cleaving satellite RNA associated with barley yellow dwarf virus (sBYDV) contains a sequence predicted to form a secondary structure similar to catalytic RNA molecules (ribozymes) of the 'hammerhead' class (Miller et al., 1991, Virology 183, 711-720). However, this RNA differs from other naturally occurring hammerheads both in its very slow cleavage rate, and in some aspects of its structure. One striking structural difference is that an additional helix is predicted that may be part of an unusual pseudoknot containing three stacked helices. Nucleotide substitutions that prevent formation of the additional helix and favor the hammerhead increased the self-cleavage rate up to 400-fold. Compensatory substitutions, predicted to restore the additional helix, reduced the self-cleavage rate by an extent proportional to the calculated stability of the helix. Partial digestion of the RNA with structure-sensitive nucleases supported the existence of the proposed alternative structure in the wildtype sequence, and formation of the hammerhead in the rapidly-cleaving mutants. This tertiary interaction may serve as a molecular switch that controls the rate of self-cleavage and possibly other functions of the satellite RNA.  相似文献   

15.
Role of divalent metal ions in the hammerhead RNA cleavage reaction.   总被引:32,自引:0,他引:32  
S C Dahm  O C Uhlenbeck 《Biochemistry》1991,30(39):9464-9469
A hammerhead self-cleaving domain composed of two oligoribonucleotides was used to study the role of divalent metal ions in the cleavage reaction. Cleavage rates were measured as a function of MgCl2, MnCl2, and CaCl2 concentration in the absence or presence of spermine. In the presence of spermine, the rate vs metal ion concentration curves are broader, and lower concentrations of divalent ions are necessary for catalytic activity. This suggests that spermine can promote proper folding of the hammerhead and one or more divalent ions are required for the reaction. Six additional divalent ions were tested for their ability to support hammerhead cleavage. In the absence of spermine, rapid cleavage was observed with Co2+ while very slow cleavage occurred with Sr2+ and Ba2+. No detectable specific cleavage was observed with Cd2+, Zn2+, or Pb2+. However, in the presence of 0.5 mM spermine, rapid cleavage was observed with Zn2+ and Cd2+, and the rate with Sr2+ was increased, indicating that while these three ions could not promote proper folding of the hammerhead they were able to stimulate cleavage. These results suggest certain divalent ions either participate directly in the cleavage mechanism or are specifically involved in stabilizing the tertiary structure of the hammerhead. Additionally, an altered divalent metal ion specificity was observed when a unique phosphorothioate linkage was inserted at the cleavage site. The substitution of a sulfur for a nonbridging oxygen atom substantially reduced the affinity of an important Mg2+ ion necessary for efficient cleavage. In contrast, the reaction proceeds normally with Mn2+, presumably due to its ability to coordinate with both oxygen and sulfur.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have captured the structure of a pre-catalytic conformational intermediate of the hammerhead ribozyme using a phosphodiester tether formed between I and Stem II. This phosphodiester tether appears to mimic interactions in the wild-type hammerhead RNA that enable switching between nuclease and ligase activities, both of which are required in the replicative cycles of the satellite RNA viruses from which the hammerhead ribozyme is derived. The structure of this conformational intermediate reveals how the attacking nucleophile is positioned prior to cleavage, and demonstrates how restricting the ability of Stem I to rotate about its helical axis, via interactions with Stem II, can inhibit cleavage. Analogous covalent crosslinking experiments have demonstrated that imposing such restrictions on interhelical movement can change the hammerhead ribozyme from a nuclease to a ligase. Taken together, these results permit us to suggest that switching between ligase and nuclease activity is determined by the helical orientation of Stem I relative to Stem II.  相似文献   

17.
18.
Dynamic interactions between hammerhead ribozymes and RNA substrates were measured using the surface plasmon resonance (SPR) technology. Two in vitro transcribed substrates (non-cleavable and cleavable) were immobilised on streptavidin-coated dextran matrices and subsequently challenged with non-related yeast tRNA or two hammerhead ribozymes, both of which had previously been shown to exhibit functional binding and cleavage of complementary target RNAs. The target-binding domain of one of the ribozymes was fully complementary to a 16-ribonucleotide stretch on the immobilised substrates, while the other ribozyme had a nine-ribonucleotide complementarity. The two ribozymes could readily be differentiated with regard to affinity. Cleavage could be measured, using the ribozyme with full target complementarity to the cleavable substrate. In contrast, the ribozyme with lower affinity lacked cleavage activity. We suggest that SPR will be useful for investigations of ribozyme-substrate interactions.  相似文献   

19.
The recent X-ray crystal structure of a hammerhead ribozyme derived from Schistosoma mansoni containing the rate-enhancing peripheral domain has a catalytic core that is very different from the catalytic core present in the structure of the "minimal" hammerhead, which lacks a peripheral domain (Martick and Scott, 2006). The new structure reconciles many of the disagreements between the minimal hammerhead structure and the biochemical data on the cleavage properties of chemically modified hammerheads. The new structure also emphasizes the dynamic nature of small RNA domains and provides a cautionary tale for everyone who tries to use structure to understand function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号