首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hyperproduction of phosphate-binding protein, PhoS, in strains carrying a multicopy plasmic containing the phoS gene, resulted in saturation of export sites. As a consequence, pre-PhoS was accumulated both in the inner membrane and in the cytoplasm. This was evidenced both in electron-microscopy and after cell fractionation. Only the membrane-associated precursor could be matured and exported. The signal sequence of the cytoplasmic pre-PhoS was slowly degraded. It was first cleaved about in its middle and then completely removed. Electron microscope studies demonstrated that the cytoplasmic pre-PhoS cannot be exported post-translationally.  相似文献   

2.
phoS is the structural gene for the phosphate-binding protein, which is localized in periplasm and involved in active transport of phosphate in Escherichia coli. It is also a negative regulatory gene for the pho regulon, and the gene expression is inducible by phosphate starvation. The complete nucleotide sequence of the phoS gene was determined by the method of Maxam and Gilbert (A. M. Maxam and W. Gilbert, Methods Enzymol. 65:499-560, 1980). The amino acid sequences at the amino termini of the pre-PhoS and PhoS proteins and at the carboxy terminus of the PhoS protein were determined by using the purified proteins. Furthermore, the amino acid sequence of enzymatically digested peptide fragments of the PhoS protein was determined. The combined data established the nucleotide sequence of the coding region and the amino acid sequence of the pre-PhoS and the PhoS proteins. The pre-PhoS protein contains an extension of peptide composed of 25 amino acid residues at the amino terminus of the PhoS protein, which has the general characteristics of a signal peptide. The mature PhoS protein is composed of 321 amino acid residues, with a calculated molecular weight of 34,422, and lacks the disulfide bond and methionine. The regulatory region of phoS contains a characteristic Shine-Dalgarno sequence at an appropriate position preceding the translational initiation site, as well as three possible Pribnow boxes and one -35 sequence. the nucleotide sequence of the regulatory region of phoS was compared with those of phoA and phoE, the genes constituting the pho regulon.  相似文献   

3.
The accumulation of pre-PhoS under conditions of PhoS overproduction has been previously described. It is now demonstrated that during the induction of PhoS, a delay in the completion of polypeptide chain elongation can be detected. This delay is related to the extent of jamming of export sites by pre-PhoS or by other exported proteins. These results suggest that a component required for completion of pre-PhoS polypeptide becomes limiting, being titrated by the excess of nascent chains bearing signal peptides. This component thus probably acts at an early step in the export pathway.  相似文献   

4.
The phosphate-binding protein (PhoS) is a periplasmic protein which is part of the high-affinity phosphate transport system of Escherichia coli. Hyperproduction of PhoS in strains carrying a multicopy plasmid containing phoS led to partial secretion of the protein. By 6 h after transfer to phosphate-limiting medium, about 13% of the total newly synthesized PhoS was secreted to the medium. Kinetic studies demonstrated that this secretion consists of newly synthesized PhoS. This secretion occurs in PhoS-hyperproducer strains but not in a PhoS-overproducer strain. Another type of secretion concerning periplasmic PhoS was observed in both PhoS-hyperproducer and PhoS-overproducer strains. This mode of secretion depended upon the addition of phosphate to cells previously grown in phosphate-limiting medium.  相似文献   

5.
The periseptal annulus in Escherichia coli   总被引:3,自引:0,他引:3  
Evidence is presented that two circumferential zones of cell envelope differentiation, the periseptal annuli, exist in E. coli as previously observed in S. typhimurium. The periseptal annulus is located at the division site of cells. A strain overproducing a periplasmic protein, PhoS (phosphate-binding protein) has been used to provide a landmark for the periseptal compartment. The zone of adhesion does not involve inner-outer membrane fusion. This zone does not provide a strong physical barrier to protein diffusion in the periplasmic space, at least under conditions of plasmolysis.  相似文献   

6.
We have studied the synthesis, processing and export of human growth-hormone-releasing factor (hGRF) in Escherichia coli transformed with a plasmid constructed for the expression of hGRF as a hybrid protein. A DNA fragment containing the entire sequence of phosphate-binding protein gene (phoS) is fused to a modified hGRF-coding sequence (phoS-mhGRF). The hybrid protein, PhoS-mhGRF, was recovered in the supernatant fluid after spheroplasting treatment indicating correct export to the periplasmic space. Pulse-chase experiments demonstrated that the hybrid protein was similarly processed as the PhoS precursor.  相似文献   

7.
The oprP gene encoding the Pseudomonas aeruginosa phosphate-specific outer membrane porin protein OprP was sequenced. Comparison of the derived amino acid sequence with the known sequences of other bacterial porins demonstrated that OprP could be no better aligned to these porin sequences than it could to the periplasmic phosphate-binding protein PhoS of Escherichia coli. Southern hybridization and restriction mapping of the oprP gene in 37 clinical isolates and the 17 serotype strains of P. aeruginosa revealed that restriction sites in the vicinity of the oprP gene were highly conserved. Several species from the Pseudomonas fluorescens rRNA homology group contained DNA that hybridized to an oprP gene probe.  相似文献   

8.
The kinetics of maturation of certain exported proteins were analysed in Escherichia coli strains that also concomitantly overproduce either a periplasmic protein or the leader peptidase. The results led to three conclusions. Overproduction of leader peptidase has no effect on the rate of maturation of at least two exported proteins, one periplasmic (TEM beta-lactamase), one outer membrane (PhoE); therefore, the quantity of leader peptidase is not rate-limiting for normal export. Overproduction of PhoS reduces the rate of maturation of two other periplasmic proteins (beta-lactamase and PhoA) and itself, presumably by competing for the rate-limiting component of the export apparatus. Overproduction of leader peptidase in a strain overproducing PhoS has no effect on the retarded maturation of PhoS. Therefore even in these conditions, leader peptidase is not rate limiting.  相似文献   

9.
A recombinant gene comprising phoS (the gene for the phosphate-binding protein PhoS) fused to a synthetic gene for a modified human growth-hormone-releasing factor (mhGRF) has been constructed. This gene was highly expressed in cells growing under conditions of phosphate starvation. Various conditions of continuous culture, varying in phosphate concentrations and dilution rates, have been tested to optimize the expression of the hybrid gene product (PhoS-mhGRF). Conditions were obtained such that a large amount of the hybrid protein was no longer exported as a result of saturation of export sites, which also induce the inhibition of processing of pre-PhoE and pre-OmpA. The pre-PhoS-mhGRF, accumulated in the cell, was recovered mainly in the particulate fraction after cell fractionation. This protein was purified. Besides the methionine residues located within the signal sequence, the only other one is located in the fusion joint of the hybrid protein. Thus cyanogen bromide treatment allowed the isolation of pure mhGRF. The yield obtained is about of 1 mg/l culture.  相似文献   

10.
Ribosomal protein S7 is one of the ubiquitous components of the small subunit of the ribosome. It is a 16S rRNA-binding protein positioned close to the exit of the tRNA, and it plays a role in initiating assembly of the head of the 30S subunit. Previous structural analyses of eubacterial S7 have shown that it has a stable alpha-helix core and a flexible beta-arm. Unlike these eubacterial proteins, archaebacterial or eukaryotic S7 has an N-terminal extension of approximately 60 residues. The crystal structure of S7 from archaebacterium Pyrococcus horikoshii (PhoS7) has been determined at 2.1 A resolution. The final model of PhoS7 consists of six major alpha-helices, a short 3(10)-helix and two beta-stands. The major part (residues 18-45) of the N-terminal extension of PhoS7 reinforces the alpha-helical core by well-extended hydrophobic interactions, while the other part (residues 46-63) is not visible in the crystal and is possibly fixed only by interacting with 16S rRNA. These differences in the N-terminal extension as well as in the insertion (between alpha1 and alpha2) of the archaebacterial S7 structure from eubacterial S7 are such that they do not necessitate a major change in the structure of the currently available eubacterial 16S rRNA. Some of the inserted chains might pass through gaps formed by helices of the 16S rRNA.  相似文献   

11.
J Goncalves  B Shi  X Yang    D Gabuzda 《Journal of virology》1995,69(11):7196-7204
Human immunodeficiency virus type 1 (HIV-1) encodes a Vif protein which is important for virus replication and infectivity. Vif is a cytoplasmic protein which exists in both membrane-associated and soluble forms. The membrane-associated form is an extrinsic membrane protein which is tightly associated with the cytoplasmic side of membranes. We have analyzed the mechanism of membrane targeting of Vif and its role in HIV-1 replication. Mutagenesis studies demonstrate that C-terminal basic domains are required for membrane association. Vif mutations which disrupt membrane association also inhibit HIV-1 replication, indicating that membrane localization of Vif is likely to be required for its biological activity in vivo. Membrane binding of Vif is almost completely abolished by trypsin treatment of membranes. These results demonstrate that membrane localization of Vif requires C-terminal basic domains and interaction with a membrane-associated protein(s). This interaction may serve to direct Vif to a specific cellular site, since immunofluorescence staining and plasma membrane fractionation studies show that Vif is localized predominantly to an internal cytoplasmic compartment rather than to the plasma membrane. The mechanism of membrane targeting of Vif is different in some respects from that of other extrinsic membrane proteins, such as Ras, Src, and MARCKS, which utilize a basic domain together with a lipid modification for membrane targeting. Membrane targeting of Vif is likely to play an important role in HIV-1 replication and thus may be a therapeutic target.  相似文献   

12.
Using strains with or without the PhoE porin or different components of the phosphate regulon, we determined that maintenance of the culturability of Escherichia coli in seawater depended significantly on the presence of structures allowing access of phosphate ions to the periplasm, then to the cytoplasm of cells. Cells totally deprived of the two main phosphate transport systems (Pit, Pst) exhibited the highest loss of culturability. Most of this effect resulted from the loss of the high-affinity Pst system, and more specifically that of the periplasmic phosphate-binding protein PhoS. Survival was enhanced in seawater supplemented with phosphate (0.5 mm), whether or not these structures were present. From an ecological point of view, it is assumed that the presence of phosphate ions, even at low concentrations, can influence the behavior of E. coli cells in seawater. Offprint requests to: M.J. Gauthier  相似文献   

13.
The purification of a phosphate-binding protein (PiBP2) by immunoadsorption is described. The entire anti phosphate-binding protein 2 antibodies as well as the Fab fragments obtained from these antibodies inhibit Pi uptake by whole cells. The inhibition is a mixed type of inhibition (V m and K m are affected). These results should be regarded as a possible involvement of phosphate-binding protein 2 in Pi uptake. The binding of 125I-labelled fragments prepared from anti phosphate-binding protein 2 antibodies to whole cells, to shocked cells and to protoplasts has been investigated. The results confirm the release of phosphate-binding protein by osmotic shock and during protoplast formation. From these findings, a cell-wall localisation, near the cell surface of the phosphate-binding protein should be proposed.Abbreviations Pi inorganic phosphate - PiBP phosphate-binding protein - Tris Tris (hydroxymethyl)-aminoethane - MES (2(N-Morpholino) ethanesulfonic acid - BSA bovine serum albumin - EDTA ethylene diamine tetraacetic acid, disodium salt - PMSF phenylmethyl sulfonyl fluoride - SDS sodium dodecyl sulfate - Fab fragments, fragment antigen binding  相似文献   

14.
In rat pinealocytes, cytoplasmic alkalization causes protein kinase C (PKC) translocation, but the isozyme involved is not known. In this study, we investigated the effect of cytoplasmic alkalization on membrane-associated PKCalpha, delta, epsilon, and zeta, four isozymes present in the rat pineal gland. Treatment with NH(4)Cl, which had no effect on PKCzeta, caused a sustained increase in membrane-associated PKCalpha, delta, and epsilon that lasted for at least 60 min. The effect of NH(4)Cl on PKCalpha, delta, and epsilon was reduced by sodium propionate, an agent that counteracts the effect of NH(4)Cl on intracellular pH. Both sodium propionate and 5-(N,N-hexamethylene)amiloride (HMA), two treatments that abolished the effect of norepinephrine on cytoplasmic alkalization, also reduced norepinephrine-mediated increases in membrane-associated PKCalpha, delta, and epsilon. In contrast, these two treatments did not have an effect on the increase in membrane-associated PKC isozymes caused by 4beta-phorbol 12-myristate 13-acetate (PMA), an active phorbol ester, even though HMA was effective in abolishing PMA-mediated increases in intracellular pH. These results, apart from demonstrating that cytoplasmic alkalization by itself can cause translocation of PKCalpha, delta, and epsilon in rat pinealocytes, also indicate that the norepinephrine-stimulated cytoplasmic alkalization plays an important role in transducing signals from the adrenergic receptor to selective PKC isozymes. However, PKC translocation stimulated directly by PMA does not appear to be sensitive to changes in intracellular pH.  相似文献   

15.
The possibility that fusicoccin (FC) binds to plasma membrane-associated ATPases of oat (cv. Victory) roots has been examined. Specific FC-binding in vitro is localized primarily on plasma membrane-enriched fractions. This FC-binding is greatly reduced by pretreatment of the membrane vesicles at temperatures above 45 C or with trypsin, and the same treatments cause the release of already bound FC. These results support the idea that the FC receptor is a protein located on the plasma membrane.  相似文献   

16.
The Vif (viral infectivity factor) protein of human immunodeficiency virus type 1 (HIV-1) has been shown to dramatically enhance the infectivity of HIV-1 virus particles during virus production. The subcellular localization of Vif was examined to elucidate cellular pathways which may be important for Vif function. Indirect immunofluorescence staining of Vif demonstrated a diffuse cytoplasmic distribution and showed that most Vif was not associated with the Golgi complex, a proposed site of localization (B. Guy, M. Geist, K. Dott, D. Spehner, M.-P. Kieny, and J.-P. Lecocq, J. Virol. 65:1325-1331, 1991). Subcellular fractionation of transfected COS cells and HIV-1-infected Jurkat and CEM cells demonstrated that Vif is a cytoplasmic protein which exists in both a soluble cytosolic form and membrane-associated form. The membrane-associated form of Vif is a peripheral membrane protein which is tightly associated with the cytoplasmic side of cellular membranes. The C terminus of Vif was required for the stable association of Vif with membranes. The C terminus was also essential for Vif function, suggesting that the association of Vif with membranes is likely to be important for its biological activity. The highly conserved regions at residues 103 to 115 and 142 to 150 were important for Vif function but did not affect membrane association, indicating that these regions are likely to be important for other, as-yet-unknown functions.  相似文献   

17.
Xoom has been identified as a novel gene that plays an important role in gastrulation of Xenopus laevis embryo. Although Xoom is actively transcribed during oogenesis, distribution and function of its translation product have not yet been clarified. In the present study, the polyclonal antibody raised against Xoom was generated to investigate a behavior of Xoom protein. Anti-Xoom antibodies revealed that there are two forms of Xoom protein in Xenopus embryos: (i) a 45 kDa soluble cytoplasmic form; and (ii) a 44 kDa membrane-associated form. Two forms of Xoom protein were ubiquitously detected from unfertilized egg to tadpole stage, with a qualitative peak during blastula and gastrula stages. Immunohistochemical examination showed that Xoom protein is maternally stored in the animal subcortical layer and divided into presumptive ectodermal cells during cleavage stages. Enzymatic digestion of membrane protein and immunologic detection of Xoom showed that Xoom exists as a membrane-associated protein. To examine a function of Xoom protein, anti-Xoom antibodies were injected into blastocoele of stage 7 blastula embryo. Anti-Xoom antibodies caused gastrulation defect in a dose- dependent manner. These results suggest that maternally prepared Xoom protein is involved in gastrulation movement on ectodermal cells.  相似文献   

18.
The SecD protein is one of the components that has been suggested from genetic studies to be involved in the protein secretion across the cytoplasmic membrane of Escherichia coli. We examined the effect of anti-SecD IgG on protein secretion using spheroplasts. Inhibition of the secretion of OmpA and maltose-binding protein (MBP) by this IgG was observed with concomitant accumulation of their precursor and mature forms in spheroplasts. This effect was specific to anti-SecD IgG. Anti-SecE and anti-SecY IgGs, of which the epitopes are located at the periplasmic domains of SecE and SecY, respectively, did not interfere with the secretion. Time-course experiments investigating the processing of proMBP and the release of MBP from spheroplasts revealed that anti-SecD IgG interfered with the release of the translocated mature MBP. The mature form of MBP thus accumulated was sensitive to trypsin, which was externally added to spheroplasts, whereas MBP released into the medium was resistant to trypsin as the native MBP is. The precursor form of MBP accumulated in spheroplasts was also trypsin resistant. We conclude that SecD is directly involved in protein secretion and important for the release of proteins that have been translocated across the cytoplasmic membrane.  相似文献   

19.
MxiG is a single-pass membrane protein that oligomerizes within the inner membrane ring of the Shigella flexneri type III secretion system (T3SS). The MxiG N-terminal domain (MxiG-N) is the predominant cytoplasmic structure; however, its role in T3SS assembly and secretion is largely uncharacterized. We have determined the solution structure of MxiG-N residues 6-112 (MxiG-N(6-112)), representing the first published structure of this T3SS domain. The structure shows strong structural homology to forkhead-associated (FHA) domains. Canonically, these cell-signaling modules bind phosphothreonine (Thr(P)) via highly conserved residues. However, the putative phosphate-binding pocket of MxiG-N(6-112) does not align with other FHA domain structures or interact with Thr(P). Furthermore, mutagenesis of potential phosphate-binding residues has no effect on S. flexneri T3SS assembly and function. Therefore, MxiG-N has a novel function for an FHA domain. Positioning of MxiG-N(6-112) within the EM density of the S. flexneri needle complex gives insight into the ambiguous stoichiometry of the T3SS, supporting models with 24 MxiG subunits in the inner membrane ring.  相似文献   

20.
When rat brain membranes were incubated with [3H]flunitrazepam in the presence of UV light, predominantly one protein (P51) was irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. On digestion of membranes with increasing concentrations of trypsin up to 40% of radioactivity irreversibly bound to proteins was removed from the membranes. In addition, P51 was nearly completely degraded to a peptide with apparent molecular weight 39,000 and this peptide was further degraded to a peptide with apparent molecular weight 25,000. In contrast, protein P55 was only partially degraded by trypsin and yielded two proteolytic peptides with apparent molecular weights 42,000 and 45,000 which seemed to be rather stable against further attack by trypsin. Membranes treated with trypsin still had the capacity to bind [3H]-flunitrazepam reversibly with an affinity similar to that of membranes not previously treated with trypsin. When these membranes were irradiated with UV light, the same proteolytic peptides were detected as in membranes first photolabeled and then digested with trypsin. These results suggest a close association between reversible and irreversible benzodiazepine binding sites and indicate that membrane-associated proteins P51 and P55 are differentially protected against degradation by trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号