首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bivalent enzyme inhibitors, in which a surface binding module is linked to an active site binding module through a spacer, are a robust approach for site-selectively delivering a minimally-sized agent to a protein surface to regulate its functions, such as protein–protein interactions (PPIs). Previous research revealed that these agents effectively disrupt the interaction between farnesyltransferase (FTase) and the C-terminal region of K-Ras4B protein. However, the whole cell activity of these peptide-based agents is limited due to their low membrane permeability. In this study, we tested a peptidomimetic modification of these bivalent agents using a previously developed inhibitor, FTI-249, and evaluated their cell permeability and biological activity in cells. Confocal cell imaging using fluorescently-labeled agents showed that the peptidomimetic 3-BODIPY penetrated cells, while the peptide-based 1-BODIPY did not. Cell-based evaluation demonstrated that peptidomimetic 3 at a concentration of 100 μM inhibited HDJ-2 processing in cells, indicating that this peptidomimetic modification improves cell permeability, thus leading to enhanced whole cell activity of the bivalent compounds.  相似文献   

2.
Polarization sensitive coherent anti-Stokes Raman scattering (PCARS) spectroscopy is a fruitful technique to study Raman vibrations of diluted molecules under off-electron resonant conditions. We apply PCARS as a direct spectroscopic method to investigate the broad amide I band of proteins in heavy water. In spontaneous Raman spectroscopy, this band is not well resolved. We fit a number of spectra taken of each protein under different polarization conditions, with a single set of parameters. It then appears that some substructure is observed in the amide I band. From this substructure, we determine the percentage of alpha-helix, beta-sheet, and random coil for the proteins lysozyme, albumin, ribonuclease A, and alpha-chymotrypsin.  相似文献   

3.
Inhibition of the farnesylation of ras proteins has been identified as a promising target in tumor therapy. Only a few farnesyltransferase inhibitors are bisubstrate analogues displaying features of both substrates, the farnesylpyrophosphate and the C-terminal CAAX-tetrapeptide sequence of the ras protein. These known bisubstrate analogues consist of an AAX-tripeptide and a farnesyl residue connected through various linkers. We have developed a class of novel compounds that mimic a bisubstrate inhibitor structure and that differ from the known ones by lacking peptidic or farnesylic substructures. Long chain fatty acids and aryl-substituted carboxylic acids were used as farnesyl surrogates. These structures were linked to isoleucine amide, benzoic acid amide, N-substituted aminobenzenesulfonamides and N(alpha)-aryl-substituted methionine derivatives, respectively, which function as AA- or AAX-mimetics.  相似文献   

4.
Peptidomimetic glutathione analogues as novel gammaGT stable GST inhibitors.   总被引:11,自引:0,他引:11  
Elevated levels of glutathione-S-transferase (GST) isoenzymes are found in many tumor cells and are thought to play a role in the onset of multidrug resistance (MDR). To evaluate the contribution of GST to this process, inhibitors are needed. Glutathione (GSH) conjugates, although good GST inhibitors, cannot be used in vivo, because they are eliminated rapidly. In this paper, we describe the synthesis of a series of novel peptidomimetic glutathione analogues that are stabilized against peptidase mediated breakdown. The peptide bonds in GSH were replaced by isosteres, such as the 'reduced' amide (which was prepared using a novel method), N-methylamide, urethane, and methylene linkages. The in vitro evaluation of the compounds focuses on GST inhibition and stability towards gamma-glutamyl-transpeptidase (gammaGT), the main enzyme involved in GSH breakdown. The compounds were conjugated to the model electrophile ethacrynic acid (EA) to resemble GS-EA, an efficient GST inhibitor. All novel GSH-analogues were shown to inhibit rat liver cytosolic GSTs. Furthermore, peptidomimetic changes of the gamma-glutamyl-cysteine amide bond greatly improved stability towards gammaGT. These compounds may therefore be useful in the design of novel in vivo applicable GST inhibitors.  相似文献   

5.
Peptoid oligomers possess many desirable attributes bioactive peptidomimetic agents, including their ease of synthesis, chemical diversity, and capability for molecular recognition. Ongoing efforts to develop functional peptoids will necessitate improved capability for control of peptoid structure, particularly of the backbone amide conformation. We introduce alkoxyamines as a new reagent for solid phase peptoid synthesis. Herein, we describe the synthesis of N-alkoxy peptoids, and present NMR data indicating that the oligomers adopt a single stable conformation featuring trans amide bonds. These findings, combined with results from computational modeling, suggest that N-alkoxy peptoid oligomers have a strong propensity to adopt a polyproline II type secondary structure.  相似文献   

6.
The central complex is an important center for higher-order brain function in insects. It is an intricate neuropil composed of four substructures. Each substructure contains repeated neuronal elements which are connected by processes such that topography is maintained. Although the neuronal architecture has been described in several insects and the behavioral role investigated in various experiments, the exact function of this neuropil has proven elusive. To describe the architecture of the central complex, we study 15 enhancer-trap lines that label various ellipsoid body neuron types. We find evidence for restriction of gene expression that is correlated with specific neuronal types: such correlations suggest functional classifications as well. We show that some enhancer-trap patterns reveal a single ellipsoid body neuron type, while others label multiple types. We describe the development of the ellipsoid body neuropil in wild-type animals and propose developmental mechanisms based on animals displaying structural mutations of this neuropil. The experiments performed here demonstrate the degree of resolution possible from the analysis of enhancer-trap lines and form a useful library of tools for future structure/function studies of the ellipsoid body.  相似文献   

7.
Fourier transform infrared spectroscopy has become well known as a sensitive and informative tool for studying secondary structure in proteins. Present analysis of the conformation-sensitive amide I region in protein infrared spectra, when combined with band narrowing techniques, provides more information concerning protein secondary structure than can be meaningfully interpreted. This is due in part to limited models for secondary structure. Using the algorithm described in the previous paper of this series, we have generated a library of substructures for several trypsin-like serine proteases. This library was used as a basis for spectra-structure correlations with infrared spectra in the amide I' region, for five homologous proteins for which spectra were collected. Use of the substructure library has allowed correlations not previously possible with template-based methods of protein conformational analysis.  相似文献   

8.
The alpha-crystallins are members of the small heat shock protein family of molecular chaperones that have evolved to minimize intracellular protein aggregation; however, they are also implicated in a number of protein deposition diseases. In this study, we employed novel mass spectrometry techniques to investigate the changes in quaternary structure associated with this switch from chaperone to adjuvant of aggregation. We replicated the oligomeric rearrangements observed for post-translationally modified alpha-crystallins, without altering the protein sequence, by refolding the alpha-crystallins in vitro. This refolding resulted in a loss of dimeric substructure concomitant with an augmentation of substrate affinity. We show that packaging of small heat shock proteins into dimeric units is used to control the level of chaperone function by regulating the exposure of hydrophobic surfaces. We propose that a bias toward monomeric substructure is responsible for the aberrant chaperone behavior associated with the alpha-crystallins in protein deposition diseases.  相似文献   

9.
Small peptide-based agents have attracted wide interest as cancer-targeting agents for diagnostic imaging and targeted therapy. There is a need to develop new high-affinity and high-specificity peptidomimetic or small-molecule ligands against cancer cell surface receptors. Here we report on the identification of a high-affinity peptidomimetic ligand (LLP2A; IC50 = 2 pM) against alpha4beta1 integrin using both diverse and highly focused one-bead-one-compound combinatorial peptidomimetic libraries in conjunction with high-stringency screening. We further demonstrate that LLP2A can be used to image alpha4beta1-expressing lymphomas with high sensitivity and specificity when conjugated to a near infrared fluorescent dye in a mouse xenograft model. Thus, LLP2A provides an important tool for noninvasive monitoring of alpha4beta1 expression and activity during tumor progression, and it shows great potential as an imaging and therapeutic agent for alpha4beta1-positive tumors.  相似文献   

10.
The central complex is an important center for higher‐order brain function in insects. It is an intricate neuropil composed of four substructures. Each substructure contains repeated neuronal elements which are connected by processes such that topography is maintained. Although the neuronal architecture has been described in several insects and the behavioral role investigated in various experiments, the exact function of this neuropil has proven elusive. To describe the architecture of the central complex, we study 15 enhancer‐trap lines that label various ellipsoid body neuron types. We find evidence for restriction of gene expression that is correlated with specific neuronal types: such correlations suggest functional classifications as well. We show that some enhancer‐trap patterns reveal a single ellipsoid body neuron type, while others label multiple types. We describe the development of the ellipsoid body neuropil in wild‐type animals and propose developmental mechanisms based on animals displaying structural mutations of this neuropil. The experiments performed here demonstrate the degree of resolution possible from the analysis of enhancer‐trap lines and form a useful library of tools for future structure/function studies of the ellipsoid body. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 189–207, 1999  相似文献   

11.
Small-molecule inhibitors of the housekeeping enzyme farnesyltransferase (FT) suppress the malignant growth of Ras-transformed cells. Previous work suggested that the activity of these compounds reflected effects on actin stress fiber regulation rather than Ras inhibition. Rho proteins regulate stress fiber formation, and one member of this family, RhoB, is farnesylated in vivo. Therefore, we tested the hypothesis that interference with RhoB was the principal basis by which the peptidomimetic FT inhibitor L-739,749 suppressed Ras transformation. The half-life of RhoB was found to be approximately 2 h, supporting the possibility that it could be functionally depleted within the 18-h period required by L-739,749 to induce reversion. Cell treatment with L-739,749 disrupted the vesicular localization of RhoB but did not effect the localization of the closely related RhoA protein. Ras-transformed Rat1 cells ectopically expressing N-myristylated forms of RhoB (Myr-rhoB), whose vesicular localization was unaffected by L-739,749, were resistant to drug treatment. The protective effect of Myr-rhoB required the integrity of the RhoB effector domain and was not due to a gain-of-function effect of myristylation on cell growth. In contrast, Rat1 cells transformed by a myristylated Ras construct remained susceptible to growth inhibition by L-739,749. We concluded that Rho is necessary for Ras transformation and that FT inhibitors suppress the transformed phenotype at least in part by direct or indirect interference with Rho, possibly with RhoB itself.  相似文献   

12.
The design of amide and heteroaryl amide isosteres as replacements for the carbamate substructure in previously disclosed 2,6-disubstituted piperidine N-arylsulfonamides is described. In several cases, amides lessened CYP liabilities in this class of gamma-secretase inhibitors. Selected compounds showed significant reduction of Abeta levels upon oral dosing in a transgenic murine model of Alzheimer's disease.  相似文献   

13.
Peptoids, oligomers of N-substituted glycines, have been attracting increasing interest due to their advantageous properties as peptidomimetics. However, due to the lack of chiral centers and amide hydrogen atoms, peptoids, in general, do not form folding structures except that they have α-chiral side chains. We have recently developed “peptoids with backbone chirality” as a new class of peptoid foldamers called α-ABpeptoids and demonstrated that they could have folding conformations owing to the methyl groups on chiral α-carbons in the backbone structure. Here we report α-ABpeptoid/β3-peptide oligomers as a unique peptidomimetic structure with a heterogeneous backbone. This hybrid structure contains a mixed α-ABpeptoid and β3-peptide residues arranged in an alternate manner. These α-ABpeptoid/β3-peptide oligomers could form intramolecular hydrogen bonding and have better cell permeability relative to pure peptide sequences. These oligomers were shown to adopt ordered folding structures based on circular dichroism studies. Overall, α-ABpeptoid/β3-peptide oligomers may represent a novel class of peptidomimetic foldamers and will find a wide range of applications in biomedical and material sciences.  相似文献   

14.
Oligomers with alpha-aminooxy acids are reported to form very stable turn and helix structures, and they are supposed to be useful peptidomimetics for drug design. A recent report suggested that homochiral oxa-peptides form a strong eight-member-ring structure by a hydrogen bond between adjacent aminooxy-acid residues in a CDCl3 solution. In order to design an alpha-MSH analog with a stable turn conformation, we synthesized four tetramers and one pentamer, based on alpha-MSH sequence, and determined the solution structures of the molecules by two-dimensional NMR spectroscopy and simulated annealing calculations. The solution conformations of the three peptidomimetic molecules (TLV, TDV, and TLL) in DMSO-d6 contain a stable 7-membered-ring structure that is similar to a gamma-turn in normal peptides. Newly-designed tetramer TDF and pentamer PDF have a ball-type rigid structure that is induced by strong hydrogen bonds between adjacent amide protons and carbonyl oxygens. In conclusion, the aminooxy acids, easily prepared from natural or unnatural amino acids, can be employed to prepare peptidomimetic analogues with well-defined turn structures for pharmaceutical interest.  相似文献   

15.
M Goodman  C Zapf  Y Rew 《Biopolymers》2001,60(3):229-245
It has been a major focus in our laboratories to prepare novel reagents and peptidomimetic structures for drug design. We have designed and prepared novel guanidinylation reagents that can be employed in solution or as solid phase reagents. We and others have utilized the reagent 3-(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one (DEPBT) for amide bond formation to couple sterically hindered structures. These couplings proceed with remarkably strong resistance to racemization. In the area of peptidomimetics, we have incorporated novel building blocks to create biologically active compounds. These building blocks include thioether and alkylamine bridges, beta-methylated, and beta,beta-dimethylated amino acid residues. These mimetic structures have been incorporated into specific target molecules such as opioids to obtain cyclic peptidomimetics with potent and selective biological activity.  相似文献   

16.
The development of new modulators possessing high efficacy, low toxicity and high selectivity is a pivotal approach to overcoming P-glycoprotein (P-gp) mediated multidrug resistance (MDR) in tumour cells. In this study 39 compounds are presented which have been synthesized and pharmacologically investigated in our laboratory. Similarly to the potent 3rd generation MDR modulator tariquidar (XR9576) the compounds contain a tetrahydroisoquinoline–ethyl-phenylamine substructure that, in contrast to XR9576, is connected to a smaller hydrophobic part, thus leading to molecules of lower molecular weight. The connection between the tetrahydroisoquinoline–ethyl-phenylamine substructure and the hydrophobic part was achieved through four different types of linkers: amide, urea, amide-ether and amide-styryl. A number of structural modifications in the hydrophobic part were created. The calcein AM assay served as test system to determine the P-gp transport inhibitory potencies of the compounds. For the amide linker derivatives a structure–activity relationship analysis was performed outlining which structural modifications contributed to the inhibitory potency. The compounds containing a bicyclic hydrophobic part with a particular substituent in a specific orientation were identified as the most potent amide derivatives. Among the urea derivatives the compounds with highest inhibitory potency possessed an ortho-nitro substituent. The conformational analysis revealed that this position enables the formation of a hydrogen bond to the urea linker thus stabilizing the conformation. Regarding the amide-styryl derivatives the elongation of the amide linker seemed to be most decisive for the observed increase in activity. The most promising candidate in the whole library possess an amide-ether linker and an ortho-nitro substituent in the hydrophobic part. This compound inhibites P-gp slightly less than tariquidar and can serve as a lead structure for new potent P-gp modulators.  相似文献   

17.
A non-methionine FT inhibitor lead structure (1) was designed through computer modeling of the peptidomimetic FT inhibitor ABT839. Optimization of this lead resulted in compounds 2e and 2g, with FT IC(50) values of 1.3 and 1.8 nM, GGT IC(50) of 1400 nM, and EC(50) (Ras processing) values of 13 and 11 nM, respectively.  相似文献   

18.
In a continuation of our research efforts on the design and synthesis of novel peptidomimetic structures, we have synthesized a series of sandostatin amide analogs in which stereoisomers of threonine and beta-hydroxyvaline(beta-Hyv) are employed. The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) explore the effects on biological activity of stereochemical modifications and beta-methylation at positions 6 or 8. By these modifications, we examine the role of the two residues in binding to somatostatin receptors. We describe the synthesis and biological activity of these analogs. In combination with the results of the conformational analysis, this study provides new insights into the structural requirements for the binding affinity of somatostatin amide analogs to somatostatin receptors [Mattern et al., Conformational analyses of sandostatin analogs containing stereochemical changes in positions 6 or 8].  相似文献   

19.
Because of their central role in programmed cell death, the caspases are attractive targets for developing new therapeutics against cancer and autoimmunity, myocardial infarction and ischemic damage, and neurodegenerative diseases. We chose to target caspase-3, an executioner caspase, and caspase-8, an initiator caspase, based on the vast amount of information linking their functions to diseases. Through a structure-based drug design approach, a number of novel β-strand peptidomimetic compounds were synthesized. Kinetic studies of caspase-3 and caspase-8 inhibition were carried out with these urazole ring-containing irreversible peptidomimetics and a known irreversible caspase inhibitor, Z-VAD-fmk. Using a stopped-flow fluorescence assay, we were able to determine individual kinetic parameters of caspase-3 and caspase-8 inhibition by these inhibitors. Z-VAD-fmk and the peptidomimetic inhibitors inhibit caspase-3 and caspase-8 via a three-step kinetic mechanism. Inhibition of both caspase-3 and caspase-8 by Z-VAD-fmk and of caspase-3 by the peptidomimetic inhibitors proceeds via two rapid equilibrium steps followed by a relatively fast inactivation step. However, caspase-8 inhibition by the peptidomimetics goes through a rapid equilibrium step, a slow-binding reversible step, and an extremely slow inactivation step. The crystal structures of inhibitor complexes of caspases-3 and -8 validate the design of the inhibitors by illustrating in detail how they mimic peptide substrates. One of the caspase-8 structures also shows binding at a secondary, allosteric site, providing a possible route to the development of noncovalent small molecule modulators of caspase activity.  相似文献   

20.
Herein, we report the rational design, synthesis and biological evaluation of conjugates consisting of the synthetic retinoid Am580 and biotin connected via a linker moiety. We found that the linking substructure between the retinoid part and the biotin part is critical for retaining the biological activity. Conjugate 4 with a shorter linker showed similar potency to endogenous retinoid ATRA (1) and the parent compound Am580 (2) for neural differentiation of mouse embryotic carcinoma P19 cells, and showed the same pattern of induction of gene expression. It is expected to be useful as a probe for investigations of retinoid function. The design rationale and structure-activity relationship of the linker moiety are expected to be helpful for developing biotin conjugates of other nuclear receptor ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号