首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Wan SL  Xu JJ  Sun G 《生理科学进展》2001,32(2):171-173
中枢神经系统的发生、分化、发育成熟和退化中均有糖皮质激素的参与。糖皮质激素对神经系统的影响是在11β-羟基类固醇脱氢酶的调节下,通过与糖皮质激素受体和盐皮质激素受体结合,调节靶基因的转录而实现的。本文介绍了脑内糖皮质激素受体和11β-羟基类固醇脱氢酶的类型、分布、功能,以及二者在糖皮质激素发挥作用中的意义。  相似文献   

2.
围神经元网是中枢神经系统中一种包绕在特定类型神经元胞体和近端神经突周围的细胞外基质网络。在1883年,围神经元网最早被Camillo Golgi所描述,直到近几十年,研究人员才对其分子组成、发育成熟以及潜在的功能有密集的研究。研究表明,围神经元网主要由透明质酸、硫酸软骨素蛋白多糖、连接蛋白和肌腱蛋白-R组成。围神经元网在神经发育的晚期才渐次出现,它的发育成熟水平和神经可塑性水平的高低呈负相关。功能上,一方面,围神经网络被认为在稳定细胞外微环境、维持被包裹神经元的性能和保护被包裹的神经元免受有害物质的影响等方面起到了重要的作用,围神经元网的异常可以导致诸如癫痫、中风和阿尔茨海默病等中枢神经系统的机能障碍;另一方面,围神经元网作为包裹在细胞外的一道屏障限制了神经可塑性的发生和阻碍了神经损伤后的再生。在成年动物中,用软骨素酶法降解围神经元网可以促进脊髓损伤后的功能修复以及恢复活动依赖的中枢神经系统可塑性调节机制,表明围神经元网在调节神经可塑性方面起到了非常重要的作用。本文就早期发育中活动依赖的围神经网络的形成和围神经网络信号通路中的重要分子——硫酸软骨素蛋白多糖受体的研究进展进行综述,并就它们如何调节神经可塑性展开讨论。  相似文献   

3.
多巴胺是脑内重要的信息传递物质,不仅可以作为递质释放到前额叶、伏隔核等脑区,直接进行信息传递,也可以作为调质调节其它突触递质的传递,并影响神经元可塑性。海马参与构成边缘系统,受多巴胺能神经支配,执行着有关学习记忆以及空间定位的功能。海马神经元的可塑性是学习记忆的细胞分子基础。研究表明,多巴胺对海马神经元的突触可塑性和兴奋性可塑性都具有重要的调节作用。本文扼要综述多巴胺对海马神经元突触可塑性和兴奋性可塑性的调节机制的研究进展,以期为DA系统参与海马区学习记忆功能的研究提供新思路,更深入地了解学习记忆的神经机制。  相似文献   

4.
在神经系统发育的早期阶段,某些脑区的神经元表达催化细胞内雌激素合成的关键酶——芳香酶。同时,在相同区域有雌激素受体的表达。因此可以推测:神经元合成的雌激素可能通过雌激素受体影响神经系统的发育。结合近期的研究进展,本文从以下四个方面初步回答此问题:(1)雌激素对大脑皮层神经元的存活、迁移、聚集的促进作用;(2)雌激素对海马神经元突触形成以及海马不成熟神经细胞增殖的影响;(3)雌激素对背根神经节内感觉神经元存活的调节;(4)雌激素对神经前体细胞增殖、分化的影响。  相似文献   

5.
肾上腺皮质酮可通过血-脑屏障,并分别与脑内盐皮质素受体和糖皮质素受体结合。皮质类固醇激素通过对基因的调节,可恢复由电流或其它神经递质引起的神经元膜性能的改变。在此条件下,盐皮质激素受体介导的效应是提高细胞兴奋性,而糖皮质激素受体介导的效应则是降低细胞兴奋性。由皮质类固醇介导  相似文献   

6.
果实发育过程中糖的积累   总被引:70,自引:4,他引:66  
从以下几个方面对果实发育过程中糖的积累进行了综合评述:(1)各种果实内糖的种类、代谢和区域分布:(2)糖进入果裨路径;(3)糖在果实内积累的机制(关键酶调节、跨质膜和液色膜的载体调节、激系调节和渗透调节)。  相似文献   

7.
认知是神经中枢的高级智能活动,其神经生理特性是中枢神经之高度可塑性,涵盖神经网络、神经再生及突触连接等层次的可塑性调节变化。因突触可塑性是神经元之间信息传递之中心枢纽,亦为神经可塑性之主要部位。故本文主要从与突触可塑性相关的LTP、突触素、相关神经递质及临床相关疾病等方面阐述突触可塑性对认知功能的影响。  相似文献   

8.
目的:探讨声音强度对大鼠听皮层神经元特征频率可塑性的影响。方法:采用常规电生理学细胞外记录技术,测定不同声刺激强度下,听皮层神经元的特征频率和调谐曲线,比较条件刺激前后的变化。结果:在条件刺激声频率和神经元的特征频率相差±1.0kHz范围内,条件刺激诱导的神经元特征频率可塑性与条件刺激强度有关,较高的刺激强度比较低刺激强度诱导的特征频率可塑性概率高;特征频率可塑性的概率与神经元的频率调谐曲线类型相关,但这种相关几乎不受条件刺激声强度影响。结论:条件声刺激强度可明显影响大鼠听皮层神经元特征频率的可塑性。  相似文献   

9.
糖皮质激素对胎儿下丘脑-垂体-肾上腺皮质轴的印迹效应   总被引:2,自引:0,他引:2  
现已发现,糖皮质激素(glucocorticoids,GC)参与神经细胞的发生、分化、成熟及死亡。在胎儿脑发育的关键时期,接触过高浓度的GC将会影响其出生后的下丘脑-垂体-肾上腺轴(HPA轴)的功能。HPA轴与应激反应密切相关,对孕期暴露于高浓度的GC非常敏感。GC主要是通过以下三点来编程成年HPA轴功能的:(1)脑干神经系统的发育和功能;(2)海马皮质类固醇受体发育状态;(3)室旁核神经元的发育和功能。孕期接触高浓度的GC还可以直接影响脑结构的发育。GC对HPA轴功能及脑结构的影响则导致了成年行为的改变及一系列疾病的发生。  相似文献   

10.
神经元周围基质网络(perineuronal nets,PNNs)是一种特殊的细胞外基质结构,具有调节突触可塑性、稳定突触和保护神经元免受氧化应激损害等多种复杂功能.PNNs参与认知的发展过程,包括编码、巩固和更新记忆,在神经可塑性和记忆调节中发挥着重要作用,而认知功能障碍是阿尔茨海默病(Alzheimer's dis...  相似文献   

11.
The ultrastructural organization of various peripheral nerves, including the crural nerve, has been investigated in the locust and cockroach. In some cases the larger nerves are ensheathed by a fat body layer which is not always complete. However, like many nervous connectives, they do possess a continuous acellular neural lamella and a perineurial cell layer which surround the glial-axonal mass. Adjacent perineurial cells are associated with one another by septate desmosomes, gap junctions and tight junctions. These last may represent the morphological basis of the ‘blood-brain barrier’ observed electrophysiologically in these peripheral nerves in another report. Very small nerves of the cockroach, however, although lying embedded in a neural lamella, do not possess a specialized perineurial layer displaying junctional complexes, unless they contain one or more large axons. If they have only one or more small axons, these small nerves may either appear naked, or display a single glial cell process loosely enveloping them; in either case there is no structural basis for a ‘barrier’ system. Various comparisons have been made between locust crural nerve and the cockroach central nervous connectives in an attempt to correlate some aspects of their ultrastructural organization with relevant electrophysiological information.  相似文献   

12.
Migration of cercariae of the diplostomatid trematode, Ornithodiplostomum ptychocheilus, to the brain of the fathead minnow, Pimephales promelas, takes place via directed, nonrandom movement. Penetration of the fish epidermis is rapid and is essentially complete by 2 hr postinfection. Migration to the central nervous system occurs almost exclusively via the general body musculature and connective tissue, although a few cercariae gain direct access to the nervous system via the eyes. Cercariae enter either the neural canal and spinal cord, or the brain via the spinal or cranial nerves and their associated foramina, although cercariae appear to remain in (on) these peripheral nerves for only a short time. Cercariae associated with cranial nerves continue to the brain. Those becoming associated with spinal nerves travel up the neural canal and (or) spinal cord to the brain. Data suggest that most arrive at the brain via the neural canal and spinal cord. Within the brain, most developing metacercariae (neascus-type) occur in the optic lobes and cerebellum. Whether this is “selective localization” or merely the result of the larger space afforded by these brain regions could not be determined.  相似文献   

13.
The origin and development of glial cells in peripheral nerves   总被引:10,自引:0,他引:10  
During the development of peripheral nerves, neural crest cells generate myelinating and non-myelinating glial cells in a process that parallels gliogenesis from the germinal layers of the CNS. Unlike central gliogenesis, neural crest development involves a protracted embryonic phase devoted to the generation of, first, the Schwann cell precursor and then the immature Schwann cell, a cell whose fate as a myelinating or non-myelinating cell has yet to be determined. Embryonic nerves therefore offer a particular opportunity to analyse the early steps of gliogenesis from transient multipotent stem cells, and to understand how this process is integrated with organogenesis of peripheral nerves.  相似文献   

14.
15.
The quail-chick marker system has been used to study the early developmental stages of the ganglia located along cranial nerves VII, IX, and X. The streams of neural crest cells arising from the rhombencephalic-vagal neural crest were followed from the onset of their migration up to the localization of crest cells in the trunk and root ganglia of these nerves. It was shown that two different populations of crest cells are segregated early as a result of morphogenetic movements in the hypobranchial region. The dorsal population gives rise to the root ganglia of nerves IX and X located close to the encephalic vesicles, where the crest cells differentiate both into neurons and into glia. In contrast, the ventral stream of neural crest cells contributes together with cells from epibranchial placodes to the trunk ganglia (geniculate, petrous, and nodose ganglia) of cranial nerves VII, IX, and X. The successive steps of the invasion of the placodal anlage by crest cells can be followed owing to the selective labeling of the neural crest cells. It appears that the latter give rise to the satellite cells of the geniculate, petrous, and nodose ganglia while the large sensory neurons originate from the placodes. The nodose ganglion has been the subject of further studies aimed to investigate whether neuronal potentialities can be elicited in the neural crest-derived cells that it contains. The ability to label selectively either the neurons or the glia by the quail nuclear marker made this investigation possible in the particular case of the nodose ganglion whose neurons and satellite cells have a different embryonic origin. By the technique already described (N. M. Le Douarin, M. A. Teillet, C. Ziller, and J. Smith, 1978, Proc. Nat. Acad. Sci. USA75, 2030–2034) of back-transplantation into the neural crest migration pathway of a younger host, it was shown that the presumptive glial cells of the nodose ganglion are able to remigrate when transplanted into a 2-day chick host and to differentiate into autonomic structures (sympathetic ganglion cells, adrenomedullary cells, and enteric ganglia). It is proposed as a working hypothesis that neuronal potentialities contained in the neural crest cells which invade the placodal primordium of the nodose ganglion are repressed through cell-cell interactions occurring between placodal and crest cells.  相似文献   

16.
Electric-field stimulation of neuronal activity can be used to improve the speed of regeneration for severed and damaged nerves. Most techniques, however, require invasive electronic circuitry which can be uncomfortable for the patient and can damage surrounding tissue. A recently suggested technique uses a graft-antenna—a metal ring wrapped around the damaged nerve—powered by an external magnetic stimulation device. This technique requires no electrodes and internal circuitry with leads across the skin boundary or internal power, since all power is provided wirelessly. This paper examines the microscopic basic mechanisms that allow the magnetic stimulation device to cause neural activation via the graft-antenna. A computational model of the system was created and used to find that under magnetic stimulation, diverging electric fields appear at the metal ring's edges. If the magnetic stimulation is sufficient, the gradients of these fields can trigger neural activation in the nerve. In-vivo measurements were also performed on rat sciatic nerves to support the modeling finding that direct contact between the antenna and the nerve ensures neural activation given sufficient magnetic stimulation. Simulations also showed that the presence of a thin gap between the graft-antenna and the nerve does not preclude neural activation but does reduce its efficacy.  相似文献   

17.
The treatment of cancer has made great progress. However, drug resistance remains problematic. Multiple physiologic processes of tumor development can be dominated by central and sympathetic nervous systems. The interactions between the nervous system, immune system, and tumor occur consistently and dynamically. Recent evidence suggests that nerves and neural signals are intimately involved in the development of resistance to cancer therapies. In this review, we will provide an overview of the recent progress in this rapidly growing area and discuss the potential new strategies for targeting the neural signaling pathway to improve the effectiveness of chemotherapies, targeted therapies, and immunotherapies.  相似文献   

18.
Neural crest cells from brachial levels of the neural tube populate the ventral roots, spinal nerves, and peripheral nerves of the chick forelimb where they give rise to Schwann cells. The distribution of neural crest cells in the developing forelimb was examined using homotopic and heterotopic chick-quail chimeras to label neural crest cells from subsets of the brachial spinal segments. Neural crest cells from particular regions of the spinal cord populated ventral roots and spinal nerves adjacent to or immediately posterior to the graft. Crest cells also populated the brachial plexus in accord with their segmental origins. In the forelimb, neural crest cells populated muscle nerves with anterior brachial spinal segments populating nerves to anterior musculature of the forelimb and posterior brachial spinal segments populating nerves to posterior musculature. Similar patterns were seen following both homotopic and heterotopic transplantation. In both types of grafts, the distribution of neural crest cells largely matched the sensory and motor projection pattern from the same spinal segmental level. This suggests that neural crest-derived Schwann cells from a particular spinal segment may use sensory and motor fibers emerging from the same segmental level as substrates to guide their migration into the periphery.  相似文献   

19.
Several years ago Levine, Denenberg, Ader, and others described the effects of postnatal "handling" on the development of behavioral and endocrine responses to stress. As adults, handled rats exhibited attenuated fearfulness in novel environments and a less pronounced increase in the secretion of the adrenal glucocorticoids in response to a variety of stressors. These findings clearly demonstrated that the development of rudimentary, adaptive responses to stress could be modified by environmental events. We have followed these earlier studies, convinced that this paradigm provides a marvellous opportunity to examine how subtle variations in the early environment alter the development of specific neurochemical systems, leading to stable individual differences in biological responses to stimuli that threaten homeostasis. In this work we have shown how early handling influences the development of certain brain regions that regulate glucocorticoid negative-feedback inhibition over hypothalamic-pituitary-adrenal (HPA) activity. Specifically, handling increases glucocorticoid (type II corticosteroid) receptor density in the hippocampus and frontal cortex, enhancing the sensitivity of these structures to the negative-feedback effects of elevated circulating glucocorticoids, and increasing the efficacy of neural inhibition over ACTH secretion. These effects are reflected in the differential secretory pattern of ACTH and corticosterone in handled and nonhandled animals under conditions of stress. In more recent years, using a hippocampal cell culture system, we have provided evidence for the importance of serotonin-induced changes in cAMP levels in mediating the effect of postnatal handling on hippocampal glucocorticoid receptor density. The results of these studies are consistent with the idea that environmental events in early life can permanently alter glucocorticoid receptor gene expression in the hippocampus, providing evidence for a neural mechanism for the development of individual differences in HPA function.  相似文献   

20.
In 20 anesthetized dogs the thoracic autonomic nerves were carefully exposed in order to determine which produced cardiovascular responses when the afferent or efferent component of each was stimulated. Efferent parasympathetic and sympathetic fibers arise from the caudal cervical ganglion regions bilaterally as well as from the vagus caudally to that ganglion. The majority of negative chromotropic, dromotropic and inotropic fibers arise from the vagus or near the recurrent laryngeal nerves; however, some small parasympathetic fibers also arise from the vagi down to the level of the pulmonary vessels. Efferent sympathetic nerves are relatively large with the exception of the stellate cardiac nerves, and produce specific positive chronotropic or inotropic responses. Afferent fibers are numerous in the recurrent cardiac, innominate, ventromedial and dorsal nerves and not very numerous in both stellate cardiac nerves as well as in the nerves at the level of the pulmonary vessels; thus there are numerous cholinergic and adrenergic efferent fibers which exhibit specific chronotropic or inotropic responses. The correlation between neural anatomy and specific physiological cardiodynamics illustrates beautifully the interrelationship of structure and function which exists within the autonomic nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号