首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Frequency-resolved fluorescence measurements have been performed to quantitate the lateral stress of the lipid layer containing nonbilayer phase preferring dioleoylphosphatidylethanolamine (DOPE). On the basis of a new rotational diffusion model, the wobbling diffusion constant (Dw), the curvature-related hopping diffusion constant (DH), and the two local orientational order parameters ([P2] and [P4]) of 1-palmitoyl-2-[[2-[4-(6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl] carbonyl]-3-sn-phosphatidylcholine (DPH-PC) in fully hydrated DOPE and DOPE/dioleoylphosphatidylcholine (DOPC) mixtures were calculated from the frequency-domain anisotropy data. The values of [P2], [P4], and DH for DOPE were found to increase significantly at approximately 12 degrees C, the known lamellar liquid crystalline (L alpha) to inverted hexagonal (HII) phase transition temperature of DOPE. Similar features as well as a decline of Dw were detected in the DOPE/DOPC mixtures as the DOPE content was increased from 85% to 90% at 23 degrees C, corresponding to the known lyotropic phase transition of the DOPE/DOPC. In contrast, for DOPC (0-40 degrees C) and DOPE/DOPC (0-100% DOPE at 3 degrees C), which remained in the L alpha phase, these changes were not detected. The most probable local orientation of DPH-PC in the DOPE/DOPC mixtures shifted progressively toward the normal of the lipid/water interface as the content of DOPE increased. We concluded that the curvature-related lateral stress in the lipid layer increases with the content of the nonbilayer phase preferring lipids.  相似文献   

2.
Fluorescence depolarization techniques are used to determine the molecular order and reorientational dynamics of the probe molecule TMA-DPH embedded in the lamellar L alpha and the hexagonal HII phases of lipid/water mixtures. The thermotropically induced L alpha----HII phase transition of the lipid DOPE is used to obtain macroscopically aligned samples in the hexagonal HII phase at 45 degrees C from samples prepared in the lamellar L alpha phase at 7 degrees C. The interpretation of angle-resolved fluorescence depolarization experiments on these phases, within the framework of the rotational diffusion model, yields the order parameters (P2) and (P4), and the diffusion constants for the reorientational motions. The reorientational motion rates of the TMA-DPH molecules in the hexagonal HII phase are comparable with those in the lamellar L alpha phase. Furthermore, the lateral diffusion of the probe molecule on the surface of the lipid/water cylinder in the hexagonal phase is found to be considerably slower than the reorientational motion.  相似文献   

3.
The polymorphic phase behavior of aqueous dispersions of dioleoylphosphatidylethanolamine (DOPE) and its N-methylated analogues, DOPE-Me, DOPE-Me2, and DOPC, has been investigated by X-ray diffraction. In the fully hydrated lamellar (L alpha) phase at 2 degrees C, the major structural difference is a large increase in the interlamellar water width from DOPE to DOPE-Me, with minor increases with successive methylation. Consistent with earlier reports, inverted hexagonal (HII) phases are observed upon heating at 5-10 degrees C in DOPE and at 65-75 degrees C in DOPE-Me and are not observed to at least 85 degrees C in DOPE-Me2 or DOPC. In DOPE, the L alpha-HII transition is facile and is characterized by a relatively narrow temperature range of coexistence of L alpha and HII domains, each with long-range order. DOPE-Me exhibits complex nonequilibrium behavior below the occurrence of the HII phase: Upon heating, the L alpha lattice spontaneously disorders on a time scale of days; on cooling from the HII phase, the disorder rises on a time scale of minutes. It is shown that, in copious water, the disordered state transforms very slowly into phases with cubic symmetry. This process is assisted by the generation of small amounts of lipid degradation products. The relative magnitudes of the monolayer spontaneous radius of curvature, R0 [Kirk, G. L., Gruner, S. M., & Stein, D. L. (1984) Biochemistry 23, 1093; Gruner, S. M. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3665], are inferred from the HII lattice spacings vs temperature and are shown to increase with increasing methylation. The relative magnitudes of R0 are categorized as small for DOPE, intermediate for DOPE-Me, and large for DOPC. It is suggested, and examples are used to illustrate, that small R0 lipid systems exhibit facile, low-temperature L alpha-HII transitions, intermediate R0 systems exhibit complex nonequilibrium transition behavior and are likely to form cubic phases, and large R0 systems are stable as L alpha phases. The relationship between the cubic phases and minimal periodic surfaces is discussed. It is suggested that minimal periodic surfaces represent geometries in which near constant, intermediate R0 values can be obtained concomitantly with monolayers of near constant thickness, thereby leading to equilibrium cubic phases. Thus, the relative magnitude of the spontaneous radius of curvature may be used to predict mesomorphic behavior.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
5.
The following results are reported in this paper: The interaction of gramicidin with [11,11-2H2]dioleoylphosphatidylcholine (DOPC) and [11,11-2H2]dioleoylphosphatidylethanolamine (DOPE) at different stages of hydration was studied by 2H- and 31P-nuclear magnetic resonance. In the L alpha phase in excess water the acyl chains of phosphatidylethanolamine (PE) are more ordered than phosphatidylcholine (PC) most likely as the result of the lower headgroup hydration of the former lipid. In excess water gramicidin incorporation above 5 mol % in DOPC causes a bilayer----hexagonal HII phase change. In the HII phase acyl chain order is virtually unaffected by gramicidin but the peptide restricts the fast chain motions. At low water content gramicidin cannot induce the HII phase but it markedly decreases chain order in the DOPC bilayer. Increasing water content results in separation between a gramicidin-poor and a gramicidin-rich L alpha phase with decreased order of the entire lipid molecule. Further increase in hydration reverts at low gramicidin contents the phase separation and at high gramicidin contents results in a direct change of the disordered lamellar to the hexagonal HII phase. Gramicidin also promotes HII phase formation in the PE system but interacts much less strongly with PE than with PC. The results support our hypothesis that gramicidin, by a combination of strong intermolecular attraction forces and its pronounced cone shape, both involving the four tryptophans at the COOH-terminus, has a strong tendency to organize, with the appropriate lipid, in intramembranous cylindrical structures such as is found in the HII phase.  相似文献   

6.
A partial phase diagram of the ternary system dioleoylphosphatidylethanolamine (DOPE)/sodium cholate/water has been determined using 31P Nuclear Magnetic Resonance (NMR) spectroscopy. In the absence of cholate, it is well known that the DOPE/water system forms a reversed hexagonal (HII) phase. We have found that addition of even small amounts of cholate to the DOPE/water system leads to a transition to a lamellar (L alpha) phase. At higher cholate concentrations, a cubic (I) phase (low water content) or a micellar solution (L1) phase (high water content) is present. Thus, cholate molecules have a strong tendency to alter the lipid monolayer curvature. Increasing the concentration of cholate changes the curvature of DOPE from negative (HII phase), through zero (L alpha phase), and finally to a phase of positive curvature (micellar solution). This observation can be rationalized in terms of the molecular structure of cholate, which is amphipathic and has one hydrophobic and one hydrophilic side of the steroid ring system. The cholate molecules have a tendency to lie flat on the lipid aggregate surface, thereby increasing the effective interfacial area of the polar head groups, and altering the curvature free energy of the system.  相似文献   

7.
The kinetics of the lamellar (L alpha)-inverse hexagonal (HII) phase transition in diacylphosphatidylethanolamine (PE)--water systems were probed with time-resolved X-ray diffraction. Transition kinetics in the fast time regime (approximately 100 ms) were studied by initiating large temperature jumps (up to 30 degrees C) with a 50-ms electrical current pulse passed through a lipid-salt water dispersion, resulting in ohmic heating of the sample. Diffraction with a time resolution to 10 ms was acquired at the National Synchrotron Light Source. The time constant for the phase transition for 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was on the order of 100 ms for the largest temperature jumps recorded. Faster transition behavior was found for a 1,2-dielaidoyl-sn-glycero-3-PE mixture. The HII lattice parameters for both systems were seen to swell from an initial value commensurate with the lamellar lattice to the final equilibrium value. The rate of swelling was seen to be independent of the magnitude of the temperature jump. For small temperature jumps (less than 10 degrees C), the phase transition kinetics slow dramatically, and transition studies can readily be performed on a conventional rotating anode X-ray source. At 4 degrees C, a DOPE sample was observed to slowly convert to the hexagonal phase over the course of a week, with the decay in the lamellar intensity fitting a power law behavior over four decades of time. This power law behavior is shown to have interesting consequences to the determination of the phase transition temperature of lipid-water dispersions by conventional methods such as calorimetry.  相似文献   

8.
We report the observation of an inverted cubic phase in aqueous dispersions of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) by small-angle X-ray diffraction. DOPE is a paradigm in the study of nonlamellar phases in biological systems: it exhibits a well-known phase transition from the lamellar (L alpha) to the inverted hexagonal phase (HII) as the temperature is raised. The transition is observed to occur rapidly when a DOPE dispersion is heated from 2 degrees C, where the L alpha phase is stable, to 15 degrees C, where the HII phase is stable. We report on the induction of a crystallographically well-defined cubic lattice that is slowly formed when the lipid dispersion is rapidly cycled between -5 and 15 degrees C hundreds of times. Once formed, the cubic lattice is stable at 4 degrees C for several weeks and exhibits the same remarkable metastability that characterizes other cubic phases in lipid-water systems. X-ray diffraction indicates that the cubic lattice is most consistent with either the Pn3m or Pn3 space group. Tests of lipid purity after induction of the cubic indicate the lipid is at least 98% pure. The cubic lattice can be destroyed and the system reset by cycling the specimen several times between -30 and 2 degrees C. The kinetics of the formation of the cubic are dependent on the thermal history of the sample, overall water concentration, and the extreme temperatures of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from -5 to +50 degrees C. At temperatures above 22 degrees C, the dispersions form an inverse (HII) phase at all water concentrations. Below 25 degrees C, an HII phase occurs at high water concentrations, an L alpha phase is formed at intermediate water concentrations, and finally the system switches back to an HII phase at low water concentrations. The enthalpy of the L alpha-HII-phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using 31P and 2H NMR and X-ray diffraction, we measured the trapped water volumes in HII and L alpha phases as a function of osmotic pressure. The change of the HII-phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The HII-L alpha-HII double-phase transition at temperatures below 22 degrees C can be shown to be a consequence of (i) the greater degree of hydration of the HII phase in excess water and (ii) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams.  相似文献   

10.
31P-NMR and X-ray diffraction techniques are used to study the comparative ability of myelin basic protein (MBP) vs. other basic proteins to convert hexagonal (HII) phases to stable lamellar (L alpha) structures. Pure dioleoylphosphatidylethanolamine (DOPE) at pH 9 and 7, and mixtures of DOPE/phosphatidylserine (PS) (95:5 and 80:20% w/w) at pH 7 were employed for this investigation. The polymorphic behavior of the lipid suspensions was evaluated in the presence and absence of several basic proteins (MBP, calf thymus histone, lysozyme, melittin) and the cationic polypeptide, polylysine (PL). Each of the proteins and PL was capable of binding the pure DOPE HII phase at pH 9 but with varying morphological consequences, i.e., lamellar stabilization (MBP, histone, PL), formation of new protein-DOPE HII phases (lysozyme) or lipid disordering/vesiculation (melittin). Reduction to pH 7 resulted in the dissociation of protein from DOPE - with the exception of melittin - and the reformation of a pure lipid HII phase. Additions of PS to DOPE at pH 7 facilitated protein binding, but among the proteins examined, only MBP was capable of converting the lipid suspension into a stable multilamellar form. Differences in the lipid morphology produced by each protein are discussed in terms of protein physicochemical characteristics. In addition, a possible relationship between MBP-lipid interactions and the stability of myelin sheath lipid multilayers is inferred from the significant bilayer-stabilizing capacity of MBP.  相似文献   

11.
Results of a kinetic model of thermotropic L alpha----HII phase transitions are used to predict the types and order-of-magnitude rates of interactions between unilamellar vesicles that can occur by intermediates in the L alpha----HII phase transition. These interactions are: outer monolayer lipid exchange between vesicles; vesicle leakage subsequent to aggregation; and (only in systems with ratios of L alpha and HII phase structural dimensions in a certain range or with unusually large bilayer lateral compressibilities) vesicle fusion with retention of contents. It was previously proposed that inverted micellar structures mediate membrane fusion. These inverted micellar structures are thought to form in all systems with such transitions. However, I show that membrane fusion probably occurs via structures that form from these inverted micellar intermediates, and that fusion should occur in only a sub-set of lipid systems that can adopt the HII phase. For single-component phosphatidylethanolamine (PE) systems with thermotropic L alpha----HII transitions, lipid exchange should be observed starting at temperatures several degrees below TH and at all higher temperatures, where TH is the L alpha----HII transition temperature. At temperatures above TH, the HII phase forms between apposed vesicles, and eventually ruptures them (leakage). In most single-component PE systems, fusion via L alpha----HII transition intermediates should not occur. This is the behavior observed by Bentz, Ellens, Lai, Szoka, et al. in PE vesicle systems. Fusion is likely to occur under circumstances in which multilamellar samples of lipid form the so-called "inverted cubic" or "isotropic" phase. This is as observed in the mono-methyl DOPE system (Ellens, H., J. Bentz, and F. C. Szoka. 1986. Fusion of phosphatidylethanolamine containing liposomes and the mechanism of the L alpha-HII phase transition. Biochemistry. In press.) In lipid systems with L alpha----HII transitions driven by cation binding (e.g., Ca2+-cardiolipin), fusion should be more frequent than in thermotropic systems.  相似文献   

12.
Using multi-frequency cross-correlation fluorometry, the monomer fluorescence lifetime of 1-palmitoyl-2-[10-(1-pyrenyl)decanoyl)phosphatidylcholine (Py-PC) was employed to determine the lateral diffusion constant (DT) of dioleoylphosphatidylethanolamine (DOPE) in both the lamellar (L alpha) and the inverted hexagonal (HII) phases. The values of DT increased with temperature in both phases. However, the rate of increase of DT declined abruptly at approximately 10-13 degrees C (L alpha -HII transition temperature), as indicated by the existence of an inflection point in the log (DT/T) vs. 1/T plot. This observation suggests that the translational motion of lipids in the HII phase is lower than that in the L alpha phase upon temperature extrapolation. Lipid perturbants, cholesterol and diacylglycerol, were found to destabilize the L alpha phase of DOPE. This was demonstrated by a down-shift of the inflection point in the log(DT/T) vs. 1/T plot in the presence of the perturbants. Both cholesterol and 1,2-dioleoyl-sn-glycerol (diolein) decreased the lateral diffusion constant in both phases. Diolein promoted the HII phase more effectively than did the cholesterol. This is explained by an intrinsic wedge-shape geometry of diolein which strongly favors the formation of inverted cylindrical packing of the lipids.  相似文献   

13.
The phase behavior of partially hydrated 1, 2-dioleoylphosphatidylethanolamine (DOPE) has been studied using differential scanning calorimetry and X-ray diffraction methods together with water sorption isotherms. DOPE liposomes were dehydrated in the H(II) phase at 29 degrees C and in the L(alpha) phase at 0 degrees C by vapor phase equilibration over saturated salt solutions. Other samples were prepared by hydration of dried DOPE by vapor phase equilibration at 29 degrees C and 0 degrees C. Five lipid phases (lamellar liquid crystalline, L(alpha); lamellar gel, L(beta); inverted hexagonal, H(II); inverted ribbon, P(delta); and lamellar crystalline, L(c)) and the ice phase were observed depending on the water content and temperature. The ice phase did not form in DOPE suspensions containing <9 wt% water. The L(c) phase was observed in samples with a water content of 2-6 wt% that were annealed at 0 degrees C for 2 or more days. The L(c) phase melted at 5-20 degrees C producing the H(II) phase. The P(delta) phase was observed at water contents of <0.5 wt%. The phase diagram, which includes five lipid phases and two water phases (ice and liquid water), has been constructed. The freeze-induced dehydration of DOPE has been described with the aid of the phase diagram.  相似文献   

14.
Membrane fusion and inverted phases   总被引:11,自引:0,他引:11  
We have found a correlation between liposome fusion kinetics and lipid phase behavior for several inverted phase forming lipids. N-Methylated dioleoylphosphatidylethanolamine (DOPE-Me), or mixtures of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC), will form an inverted hexagonal phase (HII) at high temperatures (above TH), a lamellar phase (L alpha) at low temperatures, and an isotropic/inverted cubic phase at intermediate temperatures, which is defined by the appearance of narrow isotropic 31P NMR resonances. The phase behavior has been verified by using high-sensitivity DSC, 31P NMR, freeze-fracture electron microscopy, and X-ray diffraction. The temperature range over which the narrow isotropic resonances occur is defined as delta TI, and the range ends at TH. Extruded liposomes (approximately 0.2 microns in diameter) composed of these lipids show fusion and leakage kinetics which are strongly correlated with the temperatures of these phase transitions. At temperatures below delta TI, where the lipid phase is L alpha, there is little or no fusion, i.e., mixing of aqueous contents, or leakage. However, as the temperature reaches delta TI, there is a rapid increase in both fusion and leakage rates. At temperatures above TH, the liposomes show aggregation-dependent lysis, as the rapid formation of HII phase precursors disrupts the membranes. We show that the correspondence between the fusion and leakage kinetics and the observed phase behavior is easily rationalized in terms of a recent kinetic theory of L alpha/inverted phase transitions. In particular, it is likely that membrane fusion and the L alpha/inverted cubic phase transition proceed via a common set of intermembrane intermediates.  相似文献   

15.
The roles of acyl chain unsaturation and curvature in the excimer formation efficiency (EFE) of site-specific conjugated pyrene molecules in lipid membranes have been investigated by steady-state and time-resolved fluorescence spectroscopy. Six 1-2-(pyrenyl-n-acyl)-phosphatidylcholine (dipy(n)PC) probes, with pyrenyl chains of varying methylene units n from 4 to 14 carbons, were incorporated separately into dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylethanolamine (DOPE) lipid membranes at 0.1 mol%. Both the excimer-to-monomer fluorescence intensity ratio and association-to-dissociation rate constant ratio of conjugated pyrenes were used to quantify EFE. At all temperatures (T = 0-30 degrees C) and for n = 4 and 6, the EFE for DOPE was always smaller than EFE for DOPC. At T < 10 degrees C (where DOPE and DOPC are in the liquid crystalline L alpha phase) and for n > 8, the EFE for curvature frustrated DOPE was significantly greater than EFE for nonfrustrated DOPC (control), and the difference increased gradually with n. At T> 18 degrees C (where DOPE is in the inverted hexagonal H(II) phase and DOPC is in the L alpha phase) and for n > 8, EFE for the curvature-relaxed DOPE was again smaller than the EFE for DOPC control. The contributions of splay conformation and internal dynamics of pyrenyl chains to EFE were examined separately using a lattice model. Our results suggest that i) the cis double bonds of the host lipid matrix strongly perturb both the conformation and dynamics of conjugated pyrenes at the specific location around n = 8, and ii) the lateral stress at the upper part (n < 8) of the curvature frustrated bilayer membranes (DOPE) may be significantly relaxed once the membrane surface adopts a favorable negative interfacial curvature.  相似文献   

16.
K H Cheng 《Biophysical journal》1989,55(6):1025-1031
The orientational order and rotational dynamics of 2-[3-(diphenyl-hexatrienyl) propanoyl]-3-palmitoyl-L-alpha- phosphatidylcholine (DPH-PC) embedded in dioleoylphosphatidyl-ethanolamine (DOPE) were studied by fluorescence depolarization technique. Upon increasing the temperature, the calculated wobbling diffusion constant D perpendicular of the fluorescent probe was found to decrease at the lamellar (L alpha) to inverted cylindrical (H II) phase transition (10 degrees C). This suggested that the increased gauche rotamers of the alkene chains in the HII phase imposes a constraint in the wobbling motion of the fluorophore. The calculated ratio of order parameter in the L alpha phase to that in the HII phase was 1.7 and different from the theoretical value of 2.0 as predicted from the change in packing symmetry. This result can be explained by a slightly higher local order parameter of the fluorophore or by the fast rotational diffusion motion of the fluorophore around the symmetry axis of the cylindrical tubes in the HII phase.  相似文献   

17.
By the use of frequency domain cross-correlation fluorometry, the fluorescence lifetime of the water soluble probe 8,1-anilinonapthalene sulfonic acid (ANS) in aqueous dispersions of dioleoylphosphatidylethanolamine (DOPE) and phosphatidylethanolamine transphosphatidylated from egg phosphatidylcholine (TPE) was measured. The orientational order parameter and rotational diffusion constant of the lipophilic probe 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) were also determined in TPE dispersions. In agreement with a previous study on DOPE (Cheng (1989) Biophys. J. 55, 1025-1031), abrupt changes in both the order packing and rotational diffusion constant were found at the lamellar liquid crystalline (L alpha) to inverted hexagonal (HII) phase transition of TPE. Owing to the subnanosecond resolution capability of this frequency domain fluorometric technique, the heterogeneous fluorescence decay of ANS was resolved into three distinct components with different decay lifetimes (tau's). They were 0 less than tau less than 0.5 ns, 2 less than tau less than 9 ns and tau greater than 15 ns. These lifetime regions were attributed to the partitioning of ANS into the bulk aqueous medium, the lipid/water interface and the lipid hydrocarbon region, respectively. These classifications of lifetime regions were further supported by the sensitivity of those lifetime components with the solvent isotopic shift of D2O. Similar to the changes of orientational order and rotational diffusion of lipophilic probe, the lifetime and intensity fraction of ANS associated with the lipid/water interfacial region declined abruptly at the L alpha-HII transition of both DOPE and TPE. This observation suggested that a dehydration of the lipid headgroup surface occurs at the L alpha-HII transition. This study provided evidence that both the lipid headgroup surface hydration and the lipid dynamics change drastically as a result of the macroscopic rearrangement of lipids at the L alpha-HII transition.  相似文献   

18.
The phase behaviour of mixtures of recombined milk membrane lipids dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), dioleoylphosphatidylethanolamine (DOPE), phosphatidylinositol (PI) and dioleoylphosphatidylserine (DOPS) in 60% water was examined as a function of temperature between 5 and 90 degrees C. The aim was to examine under which lipid composition the average properties turn from balanced over to hydrophobic. The phase boundaries were determined by small angle X-ray diffraction (SAXD) and differential scanning calorimetry (DSC). The lamellar phase was dominating in the DOPC/SM/DOPE system. The phase boundary for the reversed hexagonal phase was only observed at high DOPE content within the examined temperature interval. The anionic phospholipids PI and DOPS induced a swollen lamellar phase, but no significant change of the transition between the lamellar phase and the reversed hexagonal phase was observed.  相似文献   

19.
M W Tate  S M Gruner 《Biochemistry》1989,28(10):4245-4253
The characteristic temperature dependence of the lattice basis vector length d of phospholipid-water systems in the inverted hexagonal (HII) phase has been investigated with X-ray diffraction. For 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), d falls sharply from 78.1 A at 10 degrees C to 62.5 A at 90 degrees C. When used in conjunction with the volume fractions of the constituents, d can be used to determine the dimensions within the lipid and water regions. These data showed that a reduction in the radius of the HII-phase water cylinders Rw accounted for most of the reduction in d. From geometrical relationships between the dimensions in the HII phase, it was shown that both d and Rw are sensitive functions of the thickness of the lipid monolayer dHII. The characteristic shape of d(T) could be parameterized with the small temperature dependence of dHII along with the ratio v/a, which is the ratio of the specific volume to the area per lipid molecule at the polar interface. The ratio v/a was found to be independent of temperature for the fully hydrated HII system. Additional measurements made with a mixture of DOPE and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), mole ratio 5.07:1, produced a similar parameterization of d(T). The larger basis vector lengths for this mixture compared to those for DOPE can be attributed to a smaller ratio of v/a, which was also found to be temperature independent for this mixture. The smaller value of v/a is due to the larger effective headgroup area of DOPC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
J A Killian  B de Kruijff 《Biochemistry》1985,24(27):7890-7898
The macroscopic organization, lipid head group conformation, and structural and dynamic properties of 2H2O were investigated in dioleoylphosphatidylcholine (DOPC) model systems of varying gramicidin and 2H2O (or H2O) content by means of small-angle X-ray diffraction and 31P and 2H NMR. At low stages of hydration, N less than 6 (N = 2H2O/DOPC molar ratio), a single lamellar phase is observed in which the gramicidin molecules become preferentially hydrated upon increasing N. For 6 less than N less than 12 phase separation occurs between a gramicidin-poor and a gramicidin-rich lamellar phase. This latter phase is characterized by a smaller repeat distance and decreased DOPC head group order. For N greater than 12, the gramicidin-rich lamellar phase converts to a hexagonal HII phase. Thus, hydration of gramicidin is a prerequisite for HII phase formation in the DOPC/gramicidin system. The HII phase is very rich in gramicidin and 2H2O (gramicidin:DOPC:H2O = 1:1.1:0.9 w/w/w). A model is proposed in which self-assembly of hydrated gramicidin molecules into domains of a specific structure plays a determinant role in the formation of the HII phase by gramicidin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号