首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Artificial APCs (aAPCs) genetically modified to express selective costimulatory molecules provide a reproducible, cost-effective, and convenient method for polyclonal and Ag-specific expansion of human T cells for adoptive immunotherapy. Among the variety of aAPCs that have been studied, acellular beads expressing anti-CD3/anti-CD28 efficiently expand CD4+ cells, but not CD8+ T cells. Cell-based aAPCs can effectively expand cytolytic CD8+ cells, but optimal costimulatory signals have not been defined. 4-1BB, a costimulatory molecule expressed by a minority of resting CD8+ T cells, is transiently up-regulated by all CD8+ T cells following activation. We compared expansion of human cytolytic CD8+ T cells using cell-based aAPCs providing costimulation via 4-1BB vs CD28. Whereas anti-CD3/anti-CD28 aAPCs mostly expand naive cells, anti-CD3/4-1BBL aAPCs preferentially expand memory cells, resulting in superior enrichment of Ag-reactive T cells which recognize previously primed Ags and efficient expansion of electronically sorted CD8+ populations reactive toward viral or self-Ags. Using HLA-A2-Fc fusion proteins linked to 4-1BBL aAPCs, 3-log expansion of Ag-specific CD8+ CTL was induced over 14 days, whereas similar Ag-specific CD8+ T cell expansion did not occur using HLA-A2-Fc/anti-CD28 aAPCs. Furthermore, when compared with cytolytic T cells expanded using CD28 costimulation, CTL expanded using 4-1BB costimulation mediate enhanced cytolytic capacity due, in part, to NKG2D up-regulation. These results demonstrate that 4-1BB costimulation is essential for expanding memory CD8+ T cells ex vivo and is superior to CD28 costimulation for generating Ag-specific products for adoptive cell therapy.  相似文献   

2.
Cytotoxic CD8 T cells are key effectors in the immunotherapy of malignant and viral diseases. However, the lack of efficient methods for their in vitro priming and expansion has become a bottleneck to the development of vaccines and adoptive transfer strategies. Synthetic artificial APCs (aAPCs) are now emerging as an attractive tool for eliciting and expanding CTL responses. We show that, by controlling the MHC density on aAPCs, high- or low-avidity tumor-directed human CTL lines can be raised effectively in vitro if costimulation via CD28 and IL-12 is provided. Compared with low-avidity CTL lines, high-avidity CTLs need 100- to 1000-fold less peptide for activation, bind more MHC tetramers, and, as expected, are superior in recognizing tumor cell lines expressing Ag. We believe that the possibility to raise Ag-specific T cells with predetermined avidity will be crucial for the future use of aAPCs in immunotherapeutical settings.  相似文献   

3.
Cytotoxic T lymphocytes (CTLs) specific for the Epstein-Barr virus (EBV) latent membraneprotein 2 (LMP2) antigen are important reagents for the treatment of some EBV-associated malignancies,such as EBV-positive Hodgkin's disease and nasopharyngeal carcinoma.However,the therapeutic amount ofCTLs is often hampered by the limited supply of antigen-presenting cells.To address this issue,an artificialantigen-presenting cell (aAPC) was made by coating a human leukocyte antigen (HLA)-pLMP2 tetramericcomplex,anti-CD28 antibody and CD54 molecule to a cell-sized latex bead,which provided the dual signalsrequired for T cell activation.By co-culture of the HLA-A2-LMP2 bearing aAPC and peripheral bloodmononuclear cells from HLA-A2 positive healthy donors,LMP2 antigen-specific CTLs were induced andexpanded in vitro.The specificity of the aAPC-induced CTLs was demonstrated by both HLA-A2-LMP2tetramer staining and cytotoxicity against HLA-A2-LMP2 bearing T2 cell,the cytotoxicity was inhibited bythe anti-HLA class Ⅰ antibody (W6/32).These results showed that LMP2 antigen-specific CTLs could beinduced and expanded in vitro by the HLA-A2-LMP2-bearing aAPC.Thus,aAPCs coated with an HLA-pLMP2 complex,anti-CD28 and CD54 might be promising tools for the enrichment of LMP2-specificCTLs for adoptive immunotherapy.  相似文献   

4.
Artificial antigen-presenting cells (aAPCs) are an emerging technology to induce therapeutic cellular immunity without the need for autologous antigen-presenting cells (APCs). To fully replace natural APCs, an optimized aAPC must present antigen (signal 1), provide costimulation (signal 2), and release cytokine (signal 3). Here we demonstrate that the spatial and temporal characteristics of paracrine release of IL-2 from biodegradable polymer aAPCs (now termed paAPCs) can significantly alter the balance in the activation and proliferation of CD8+ and CD4+ T cells. Paracrine delivery of IL-2 upon T cell contact with paAPCs induces significant IL-2 accumulation in the synaptic contact region. This accumulation increases CD25 (the inducible IL-2 Rα chain) on responding T cells and increases proliferation of CD8+ T cells in vitro to levels 10 times that observed with equivalent amounts of bulk IL-2. These CD8+ T cell responses critically depend upon close contact of T cells and the paAPCs and require sustained release of low levels of IL-2. The same conditions promote activation-induced cell death in CD4+ T cells. These findings provide insight into the response of T cell subsets to paracrine IL-2.  相似文献   

5.
The function of Ag-specific central (T(CM)) and effector (T(EM)) memory CD4+ T lymphocytes remains poorly characterized in vivo in humans. Using CD154 as a marker of Ag-specific CD4+T cells, we studied the differentiation of memory subsets following anti-hepatitis B immunization. Hepatitis B surface Ag (HBs)-specific memory CD4+T cells were heterogeneous and included T(CM) (CCR7+CD27+) and T(EM) (CCR7(-)CD27(+/-)). HBs-specific T(CM) and T(EM) shared the capacity to produce multiple cytokines, including IL-2 and IFN-gamma. Several years postimmunization, approximately 10% of HBs-specific memory CD4+ T cells were in cycle (Ki67+) and the proliferating cells were CCR7+. These results suggest that the model of functional specialization of T(CM) and T(EM) cannot be applied to protein vaccine Ags and support the concept that T(CM) are capable of self-renewal and contribute to maintain the pool of memory cells.  相似文献   

6.
CD4+CD25+Foxp3+ regulatory T cells (T(reg)) are critical for controlling autoimmunity. Evidence suggests that T(reg) development, peripheral maintenance, and suppressive function are dependent on Ag specificity. However, there is little direct evidence that the T(reg) responsible for controlling autoimmunity in NOD mice or other natural settings are Ag specific. In fact, some investigators have argued that polyclonal Ag-nonspecific T(reg) are efficient regulators of immunity. Thus, the goal of this study was to identify, expand, and characterize islet Ag-specific T(reg) in NOD mice. Ag-specific T(reg) from NOD mice were efficiently expanded in vitro using IL-2 and beads coated with recombinant islet peptide mimic-MHC class II and anti-CD28 mAb. The expanded Ag-specific T(reg) expressed prototypic surface markers and cytokines. Although activated in an Ag-specific fashion, the expanded T(reg) were capable of bystander suppression both in vitro and in vivo. Importantly, the islet peptide mimic-specific T(reg) were more efficient than polyclonal T(reg) in suppressing autoimmune diabetes. These results provide a direct demonstration of the presence of autoantigen-specific T(reg) in the natural setting that can be applied as therapeutics for organ-specific autoimmunity.  相似文献   

7.
Distinct IFN-gamma and IL-2 profiles of Ag-specific CD4(+) T cells have recently been associated with different clinical disease states and Ag loads in viral infections. We assessed the kinetics and functional profile of Mycobacterium tuberculosis Ag-specific T cells secreting IFN-gamma and IL-2 in 23 patients with untreated active tuberculosis when bacterial and Ag loads are high and after curative treatment, when Ag load is reduced. The frequencies of M. tuberculosis Ag-specific IFN-gamma-secreting T cells declined during 28 mo of follow-up with an average percentage decline of 5.8% per year (p = 0.005), while the frequencies of Ag-specific IL-2-secreting T cells increased during treatment (p = 0.02). These contrasting dynamics for the two cytokines led to a progressive convergence of the frequencies of IFN-gamma- and IL-2-secreting cells over 28 mo. Simultaneous measurement of IFN-gamma and IL-2 secretion at the single-cell level revealed a codominance of IFN-gamma-only secreting and IFN-gamma/IL-2 dual secreting CD4(+) T cells in active disease that shifted to dominance of IFN-gamma/IL-2-secreting CD4(+) T cells and newly detectable IL-2-only secreting CD4(+) T cells during and after treatment. These distinct T cell functional signatures before and after treatment suggest a novel immunological marker of mycobacterial load and clinical status in tuberculosis that now requires validation in larger prospective studies.  相似文献   

8.
Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin–biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.  相似文献   

9.
HLA class I tetramers have revolutionized the study of Ag-specific CD8+ T cell responses. Technical problems and the rarity of Ag-specific CD4+ Th cells have not allowed the potential of HLA class II tetramers to be fully realized. Here, we optimize HLA class II tetramer staining methods through the use of a comprehensive panel of HIV-, influenza-, CMV-, and tetanus toxoid-specific tetramers. We find rapid and efficient staining of DR1- and DR4-restricted CD4+ cell lines and clones and show that TCR internalization is not a requirement for immunological staining. We combine tetramer staining with magnetic bead enrichment to detect rare Ag-specific CD4+ T cells with frequencies as low as 1 in 250,000 (0.0004% of CD4+ cells) in human PBLs analyzed directly ex vivo. This ultrasensitive detection allowed phenotypic analysis of rare CD4+ T lymphocytes that had experienced diverse exposure to Ag during the course of viral infections. These cells would not be detectable with normal flow-cytometric techniques.  相似文献   

10.
MHC-restricted, viral Ag-specific "memory" CTL are thought to play a decisive role in the defense against pathogenic viruses. However, the requirements for activating such CTL remain controversial. In particular, the role of CD4+ helper cells and their soluble products (e.g., IL-2) are uncertain. To approach these questions as they relate to EBV-specific CTL, highly purified CD8+ T cells from healthy EBV-seropositive individuals were cultured with autologous irradiated EBV-transformed B lymphoblastoid cell lines (LCL), in the presence or absence of autologous CD4+ cells or 1 to 10 U/ml purified rIL-2. The results indicate that the induction of CTL requires neither Th cells nor exogenous IL-2. The CTL generated from isolated CD8+ cells were HLA class I restricted as demonstrated by their ability to lyse targets sharing at least one HLA-A or -B Ag with the stimulating autologous LCL. Furthermore, a mAb (W6/32) to a common determinant on HLA class I Ag blocked both the generation and effector phases of killing, whereas an HLA class II directed mAb had no effect. Addition of an IL-2R-specific antibody (anti-Tac) to the culture medium blocked induction of CTL, suggesting that endogenously produced IL-2 plays an obligatory role in this system. Paraformaldehyde fixation of LCL abrogated their ability to function as stimulator cells; however, addition of 2 U/ml exogenous IL-2 to fixed LCL cultured with CD8+ cells allowed for the induction of highly specific CTL. These results indicate that EBV-specific memory CTL can be activated in the absence of CD4+ helper cells or their soluble products, but nonetheless require Ag and IL-2.  相似文献   

11.
Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.  相似文献   

12.
IL-21, a newly described cytokine belonging to the IL-2 gamma-chain receptor cytokine family (that includes IL-2, IL-7, and IL-15), has been described as an important regulator of the cellular immune response. In this study, the role of IL-21 in the generation of a human Ag-specific CD8+ T cell response is characterized by tracking a rare, but measurable population of self-Ag-specific T cells in vitro. Autologous dendritic cells pulsed with the melanoma antigen recognized T cells 1 self-peptide were used to stimulate CD8+ T cells from HLA-A2+ healthy donors and melanoma patients. We demonstrate that exposure to IL-21 increased the total number of MART-1-specific CD8+ T cells that could be elicited by >20-fold and, at the clonal level, enriched for a population of high-affinity CD8+ T cells with a peptide dose requirement more than 1 log(10)-fold less than their untreated counterparts. Phenotypic analysis of T cells from IL-21-treated cultures revealed a unique population of CD45RO+ CD28(high) CD8+ T cells, a phenotype that was stable for at least 4 wk after IL-21 exposure. These CD28(high) CD8+ T cells produced IL-2 upon Ag stimulation and represent potential helper-independent CTLs. Our studies demonstrate a significant role for IL-21 in the primary Ag-specific human CTL response and support the use of IL-21 in the ex vivo generation of potent Ag-specific CTLs for adoptive therapy or as an adjuvant cytokine during in vivo immunization against tumor Ags.  相似文献   

13.
Killer Ig-like receptors (KIR) are commonly found on human NK cells, gammadelta T cells, and CD8 T cells. Although KIR(+) CD4 T cells are found in certain patients, their prevalence in healthy donors is controversial. We now provide definitive proof that such cells are present in most individuals, and report on their frequency, surface phenotype, cytokine profile, and Ag specificity. The number of KIR(+) CD4 T cells detected in peripheral blood increased with age. In contrast with regular KIR(-) CD4 T cells, the majority of KIR(+) CD4 T cells lacked surface expression of CD27, CD28, CCR4, and CCR7, but did express CD57 and 2B4. In addition, KIR were detected on approximately one-tenth of CD28(-) and CD57(+) memory CD4 T cells. In line with the absence of the Th2 marker CCR4, the KIR(+) CD4 cells produced mainly IFN-gamma and little IL-4, IL-10, or IL-17 upon TCR triggering. Furthermore, the KIR(+) population contained cells that responded to recall Ags in an HLA class II-restricted fashion. Together, our data indicate that KIR-expressing CD4 T cells are predominantly HLA class II-restricted effector memory Th1 cells, and that a significant, previously unrecognized fraction of effector memory Th1 cells expresses KIR.  相似文献   

14.
The ex vivo priming and expansion of human CTL by APC, such as autologous monocyte-derived dendritic cells (DC), has the potential for use in immunotherapy for infectious diseases and cancer. To overcome the difficulty of obtaining sufficient number of autologous DC from patients, we have developed cell-based artificial APC (aAPC), designated Med-APC. These aAPC rapidly activate and expand the corresponding Ag-specific CD8+ T cells when pulsed with CTL epitope peptide(s) as efficiently as mature DC (mDC). We have also shown that Med-APC possess an innate cellular machinery that is sufficient to support the processing of complete Ag into immunodominant peptides, which considerably extends the usefulness of this technology. In addition, we have developed a novel expression vector system that expresses ubiquitinated Ag, resulting in an enhanced APC function of this system. Genetically encoded Ag can be easily introduced into Med-APC by transfection with this vector. Med-APC transfected with ubiquitinated Ag can efficiently expand the corresponding Ag-specific CTL without exogenous peptides. Therefore, Med-APC may have important therapeutic implications for adoptive immunotherapy and can be used for the detection of Ag-specific CTL for immunomonitoring.  相似文献   

15.
The development of rapid, efficient, and safe methods for generating Ag-specific T cells is necessary for the clinical application of adoptive immunotherapy. We show that B cells stimulated with CD40 ligand and IL-4 (CD40-B cells) can be efficiently transduced with retroviral vectors encoding a model Ag, CMV tegument protein pp65 gene, and maintain high levels of costimulatory molecules after gene transfer. CTL lines specific for pp65 were readily generated in all four healthy CMV-seropositive donors by stimulating autologous CD8(+) T cells with these transduced CD40-B cells, both of which were derived from 10 ml peripheral blood. ELISPOT assays revealed that the CTL lines used multiple HLA alleles as restricting elements. Thus, CD40-B cells transduced retrovirally with Ag-encoding cDNA can be potent APC and facilitate to generate Ag-specific CTL in vitro.  相似文献   

16.
Low Ag dose promotes induction and persistence of regulatory T cells (Tregs) in mice, yet few studies have addressed the role of Ag dose in the induction of adaptive CD4(+)FOXP3(+) Tregs in humans. To this end, we examined the level of FOXP3 expression in human CD4(+)CD25(-) T cells upon activation with autologous APCs and varying doses of peptide. Ag-specific T cells expressing FOXP3 were identified by flow cytometry using MHC class II tetramer (Tmr). We found an inverse relationship between Ag dose and the frequency of FOXP3(+) cells for both foreign Ag-specific and self Ag-specific T cells. Through studies of FOXP3 locus demethylation and helios expression, we determined that variation in the frequency of Tmr(+)FOXP3(+) T cells was not due to expansion of natural Tregs, but instead, we found that induction, proliferation, and persistence of FOXP3(+) cells was similar in high- and low-dose cultures, whereas proliferation of FOXP3(-) T cells was favored in high Ag dose cultures. The frequency of FOXP3(+) cells positively correlated with suppressive function, indicative of adaptive Treg generation. The frequency of FOXP3(+) cells was maintained with IL-2, but not upon restimulation with Ag. Together, these data suggest that low Ag dose favors the transient generation of human Ag-specific adaptive Tregs over the proliferation of Ag-specific FOXP3(-) effector T cells. These adaptive Tregs could function to reduce ongoing inflammatory responses and promote low-dose tolerance in humans, especially when Ag exposure and tolerance is transient.  相似文献   

17.
We have characterized the surface phenotype and function of long-lived, Ag-specific memory CD4+ T cells generated in vivo by immunization with keyhole limpet hemocyanin (KLH). CD4+ T cells from the spleens of mice primed more than 2 mo previously with KLH, produced high levels of IL-2 and IL-3, and low levels of IL-4 and IFN-gamma in response to in vitro restimulation with specific Ag. The KLH-primed T cells mediated carrier-specific helper activity for the antibody production by NIP-primed B cells in secondary in vitro responses to NIP-KLH. Subsets of CD4+ T cells from KLH-primed mice were isolated on the basis of surface CD45RB (23G2) by magnetic separation and were examined for functional capacity in several assays of Ag-specific recall. Virtually all of the secretion of IL-2, IL-3, IL-4, and IFN-gamma in response to restimulation with Ag in vitro was associated with, and considerably enriched in, the CD45RB- subset of CD4+ T cells. Similarly, carrier-specific helper function and Ag-specific proliferation in vitro were also confined to the CD45RB-, CD4+ subset of T cells, confirming the previous association of this surface phenotype with memory Th cell activity. We also examined expression of the lymphocyte homing receptor, MEL-14 (gp90MEL), which is required for lymphocyte extravasation to peripheral lymph nodes and is present in high levels on naive T cells. MEL-14 positive and negative subsets of CD4+ T cells from long term KLH-primed mice were evaluated for Ag-specific memory function in terms of lymphokine production, Ag-induced proliferation, and helper activity. Each of these functions was associated exclusively with the MEL-14- subset of CD4+ T cells, which exhibited responses comparable to the CD45RB- subset. These data indicate that memory Th cell function in the spleen is contained within the MEL-14-, CD45RB- subset of CD4+ T cells and suggest that memory helper cells may have different patterns of recirculation from naive T cells.  相似文献   

18.
Adoptive immunotherapy is a new potential method of tumour therapy, among which anti-CD19 chimeric antigen receptor T-cell therapy (CAR-T cell), is a typical treatment agent for haematological malignancies. Previous clinical trials showed that the quality and phenotype of CAR-T cells expanded ex vivo would seriously affect the tumour treatment efficacy. Although magnetic beads are currently widely used to expand CAR-T cells, the optimal expansion steps and methods have not been completely established. In this study, the differences between CAR-T cells expanded with anti-CD3/CD28 mAb-coated beads and those expanded with cell-based aAPCs expressing CD19/CD64/CD86/CD137L/mIL-15 counter-receptors were compared. The results showed that the number of CD19-specific CAR-T cells with a 4-1BB and CD28 co-stimulatory domain was much greater with stimulation by aAPCs than that with beads. In addition, the expression of memory marker CD45RO was higher, whereas expression of exhausted molecules was lower in CAR-T cells expanded with aAPCs comparing with the beads. Both CAR-T cells showed significant targeted tumoricidal effects. The CAR-T cells stimulated with aAPCs secreted apoptosis-related cytokines. Moreover, they also possessed marked anti-tumour effect on NAMALWA xenograft mouse model. The present findings provided evidence on the safety and advantage of two expansion methods for CAR-T cells genetically modified by piggyBac transposon system.  相似文献   

19.
20.
Memory CD4 T cell responses are functionally and phenotypically heterogeneous. In the present study, memory CD4 T cell responses were analyzed in different models of Ag-specific immune responses differing on Ag exposure and/or persistence. Ag-specific CD4 T cell responses for tetanus toxoid, HSV, EBV, CMV, and HIV-1 were compared. Three distinct patterns of T cell response were observed. A dominant single IL-2 CD4 T cell response was associated with the model in which the Ag can be cleared. Polyfunctional (single IL-2 plus IL-2/IFN-gamma plus single IFN-gamma) CD4 T cell responses were associated with Ag persistence and low Ag levels. A dominant single IFN-gamma CD4 T cell response was associated with the model of Ag persistence and high Ag levels. The results obtained supported the hypothesis that the different patterns observed were substantially influenced by different conditions of Ag exposure and persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号