首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Application of 14C-labelled 2,4-D to bean plants parasitized by broomrape led to a concentration of the herbicide in the immature parasite that was up to fourteen times that in the bean root. Not all substances are translocated in this way. 22Na in sodium chloride was not moved in significant amounts away from the site of application, but sucrose was found to be translocated to the parasite. Application of 2,4-D,2,4,5-T, N.A.A. and D.N.P. to mature Orobanche under field conditions had little effect. 2,4-D is not considered a suitable herbicide for the control of Orobanche in bean crops because of the high sensitivity of the host of this compound. It is thought, however, that the application to the host of a systemic herbicide which becomes concentrated in the parasite to a toxic level could well be an efficient way of controlling this type of parasite.  相似文献   

2.
The pathogenic fungus Aspergillus alliaceus has been shown to have potential for the biocontrol of Orobanche spp. (broomrape), a root parasitic plant. The effectiveness of A. alliaceus in reducing Orobanche infection was analysed using pesta granules prepared with different food formulations. The results showed that pesta granules comprising of fungal mycelia/spore mixtures from liquid and solid culture, sclerotia and fungal mycelia reduced Orobanche infection to a greater extent in below ground conditions when applied early and at high doses before crop sowing. In addition, pesta granules eliminated the risk of broomrape contamination within a 0.2–0.3 cm diameter of the granules. The sclerotial pathogenicity of A. alliaceus was compared with those of other fungi reported in other studies. In addition, some morphological and histological studies on the fungal pathogenicity on broomrape plants after infection are presented. The present study reveals the potential of sclerotial A. alliaceus pesta granule applications for long-term broomrape biocontrol under field conditions.  相似文献   

3.
A peptide from insects protects transgenic tobacco from a parasitic weed   总被引:1,自引:0,他引:1  
Parasitic plants present some of the most intractable weed problems for agriculture in much of the world. Species of root parasites such as Orobanche can cause enormous yield losses, yet few control measures are effective and affordable. An ideal solution to this problem is the development of parasite-resistant crops, but this goal has been elusive for most susceptible crops. Here we report a mechanism for resistance to the parasitic angiosperm Orobanche based on expression of sarcotoxin IA in transgenic tobacco. Sarcotoxin IA is a 40-residue peptide with antibiotic activity, originally isolated from the fly, Sarcophaga peregrina. The sarcotoxin IA gene was fused to an Orobanche-inducible promoter, HMG2, which is induced locally in the host root at the point of contact with the parasite, and used to transform tobacco. The resulting transgenic plants accumulated more biomass than non-transformed plants in the presence of parasites. Furthermore, plants expressing sarcotoxin IA showed enhanced resistance to O. aegyptiaca as evidenced by abnormal parasite development and higher parasite mortality after attachment as compared to non-transformed plants. The transgenic plants were similar in appearance to non-transformed plants suggesting that sarcotoxin IA is not detrimental to the host.  相似文献   

4.
Orobanche crenata parasitizing beans maintained a slightly higher osmotic pressure than the bean roots, largely because of the higher concentration of sugars in the broomrape tissues. The sugar was withdrawn from the bean mainly as sucrose, which was hydrolysed to glucose and fructose by the Orobanche. These sugars were then rapidly translocated to the developing flower spike. As well as maintaining a high osmotic pressure this hydrolysis ensured a sucrose concentration gradient between host and parasite. In the field, bean plants showed wilt symptoms at about the time that the Orobanche flower spikes emerged. It was found that the higher the level of infection the lower was the water content of the host. This fall in water content was not due to increased water loss by the bean shoots and it seemed unlikely that it was due to water removal by the parasite. It was concluded that the death of the bean was due to desiccation brought about largely by the reduced ability of the carbohydrate-starved roots to extract water from the soil.  相似文献   

5.
A novel selection marker for plant transformation alternative to antibiotic and herbicide resistance is described. The selective agent applied is 2-deoxyglucose (2-DOG) which in the cytosol of plant cells is phosphorylated by hexokinase yielding 2-DOG-6-phosphate (2-DOG-6-P). 2-DOG-6-P exerts toxic effects on overall cellular metabolism leading to cell death. We observed that constitutive expression of the yeast DOG R1 gene encoding a 2-DOG-6-P phosphatase resulted in resistance towards 2-DOG in transgenic tobacco plants. This finding was exploited to develop a selection system during transformation of tobacco and potato plants. The lowest concentration of 2-DOG leading to nearly complete inhibition of regeneration of wild-type explants was found to range between 400 and 600 mg/l 2-DOG for tobacco, potato and tomato plants. After Agrobacterium tumefaciens-mediated transformation cells expressing the DOG R1 gene were selected by resistance to 2-DOG. More than 50% of tobacco explants formed shoots and on average 50% of these shoots harboured the DOG R1 gene. Similar results were obtained for potato cv. Solara. The acceptability of the resistance gene derived from baker's yeast, the unobjectionable toxicological data of 2-DOG as well as the normal phenotype of DOG R1-expressing plants support the use of this selection system in crop plant transformation.  相似文献   

6.
Rhizosphere dwelling bacteria can increase plant resistance to biotic and abiotic stresses, and they promote plant growth through various mechanisms. In this study, three bioassays were conducted including the following: (a) screening for effective bacterial isolates in the suppression of broomrape, (b) evaluating induced systemic resistance against broomrape and (c) comparing the selected bacterium isolate with plant chemical inducers. Fifteen plant growth‐promoting rhizobacteria (PGPR) were examined to assess their biocontrol potential against Egyptian broomrape (Phelipanche aegyptiaca). Ten isolates significantly reduced the broomrape biomass compared to the control. The Lysinibacillus boronitolerans B124 reduced the dry weight of broomrape plants from 2.15 g in control to 0.45 g. Bacillus megaterium B6 was the best isolate in reducing the number of broomrape tubercles. In addition, the activity of three selected bacterial isolates was investigated in induced systemic resistance to broomrape by split‐root method. The Bacillus pumilus INR7 reduced the number of visible broomrape tubercles by 90%, and B. megaterium B71 and L. boronitolerans B124 were the next two in rank. Compared with the control, L. boronitolerans B124 reduced the dry weight of broomrape from 1.49 g in control to 0.39 g. In a subsequent experiment, L. boronitolerans B124 was evaluated along with some resistance‐inducing volatile compounds. Lysinibacillus boronitolerans B124 decreased the number of broomrapes by 87% on average, while the lowest dry weight of broomrape was observed in methyl jasmonate treatment. In conclusion, PGPR have considerable potential to be used in the integrated management of broomrape. It is also possible to use a mixture of rhizobacteria and defence inducers, such as biogenic volatiles as a promising approach in the management of this noxious parasitic weed.  相似文献   

7.
Mechanism of paraquat tolerance in perennial ryegrass   总被引:6,自引:3,他引:3  
Abstract The mechanism of paraquat tolerance was investigated in lines of perennial ryegrass (Lolium perenne L.) which had been selected for resistance to the herbicide. Uptake, metabolism and translocation of paraquat were studied. Susceptible cultivars and a tolerant line were not found to differ in uptake of radioactive paraquat applied to the leaf surface or supplied to the cut ends of excised leaves. Distribution of herbicide within leaf tissue was similar in tolerant and susceptible plants and no metabolites of 14C-paraquat were detected in tolerant or susceptible plants treated with sub-lethal concentrations of the herbicide. Autoradiography and quantitative determinations showed much variation in translocation of 14C-paraquat out of treated leaves of intact plants, but the variation was not related to the degree of susceptibility to the herbicide. It is concluded that paraquat tolerance in perennial ryegrass is unlikely to depend upon reduced uptake, enhanced metabolism or altered translocation of the herbicide.  相似文献   

8.
Broomrape (Orobanche cumana Wallr.) is a root parasite of sunflower that is regarded as one of the most important constraints of sunflower production in the Mediterranean region. Breeding for resistance is the most effective method of control. P-96 is a sunflower line which shows dominant resistance to broomrape race E and recessive resistance to the very new race F. The objective of this study was to map and characterize quantitative trait loci (QTL) for resistance to race E and to race F of broomrape in P-96. A population from a cross between P-96 and the susceptible line P-21 was phenotyped for broomrape resistance in four experiments, two for race E and two for race F, by measuring different resistance parameters (resistance or susceptibility, number of broomrape per plant, and proportion of resistant plants per F3 family). This population was also genotyped with microsatellite and RFLP markers. A linkage map comprising 103 marker loci distributed on 17 linkage groups was developed, and composite interval mapping analyses were performed. In total, five QTL (or1.1, or3.1, or7.1 or13.1 and or13.2) for resistance to race E and six QTL (or1.1, or4.1, or5.1, or13.1, or13.2 and or16.1) for resistance to race F of broomrape were detected on 7 of the 17 linkage groups. Phenotypic variance for race E resistance was mainly explained by the major QTL or3.1 associated to the resistance or susceptibility character (R2=59%), while race F resistance was explained by QTL with a small to moderate effect (R2 from 15.0% to 38.7%), mainly associated with the number of broomrape per plant. Or3.1 was race E-specific, while or1.1, or13.1 and or13.2 of were non-race specific. Or13.1, and or13.2 were stable across the four experiments. Or3.1, and or7.1 were stable over the two race E experiments and or1.1 and or5.1 over the two race F experiments. The results from this study suggest that resistance to broomrape in sunflower is controlled by a combination of qualitative, race-specific resistance affecting the presence or absence of broomrape and a quantitative non-race specific resistance affecting their number.Communicated by C. Möllers  相似文献   

9.
Engineering 2,4-D resistance into cotton   总被引:18,自引:0,他引:18  
Summary To reduce damage by drift-levels of the herbicide 2,4-dichlorophenoxyacetic acid, we have engineered the 2,4-D resistance trait into cotton (Gossypium hirsutum L.). The 2,4-D monooxygenase gene tfdA from Alcaligenes eutrophus plasmid pJP5 was isolated, modified and expressed in transgenic tobacco and cotton plants. Analyses of the transgenic progeny showed stable transmission of the chimeric tfdA gene and production of active 2,4-D monooxygenase. Cotton plants obtained were tolerant to 3 times the field level of 2,4-D used for wheat, corn, sorghum and pasture crops.  相似文献   

10.
The dramatic spread of root holoparasite Orobanche ramosa L. (branched broomrape) has been observed in the last few years in France in fields of Brassica napus L., Nicotiana tabacum L., and Cannabis sativa L. In the face of this occurrence and considering its tremendous capacity to adapt to its host, the question about variability of O. ramosa populations arises. The virulence of broomrape populations was investigated by cross infestations performed under greenhouse conditions using the three host species mentioned above and broomrape seeds collected from Orobanche plants parasitizing them. After 45 days of co-culture, the intensity and kinetics of infestation were determined. In all cases, parasites developed but differences were observed among associations between the host species and the broomrape population. Differences in virulence of O. ramosa populations and greater affinity between a host species and “its own” broomrape population were demonstrated by statistical analyses (F-test, CFAs). These results led to the concept of host specificity and suggestions about the existence of three different pathovars in O. ramosa. Analysis of genetic variability of the three O. ramosa populations by PCR of RAPD markers confirmed that they may be considered as three distinct pathovars.  相似文献   

11.
A survey was carried out in 1988 to determine the occurrence and distribution of the flyPhytomyza orobanchia Kaltenbach [Diptera: Agromyzidae] on broomrape (Orobanche crenata Forskal) at 21 locations in northwestern Syria. Fruit capsules of broomrape were examined in faba bean (Vicia faba L.) fields. The fly was present at 95% of the locations sampled. Of 630 broomrape plants examined over all locations, 55.5% were infested. Of the 1,890 capsules examined, 32.5% were attacked. Fly populations were highest near the coast where 79% of the broomrapes were damaged. The total seed output of broomrape plants was reduced by 29.4% in the surveyed area due to a mean seed destruction of 91.1% per infested broomrape capsule.   相似文献   

12.
The co-evolution of Orobanche spp. and their hosts within the same environment has resulted in a high degree of adaptation and effective parasitism whereby the host releases parasite germination stimulants, which are likely to be unstable in the soil. Our objective was to investigate whether extracts from non-host plants, specifically, Chinese medicinal plants, could stimulate germination of Orobanche spp. Samples of 606 Chinese medicinal herb species were extracted with deionized water and methanol. The extracts were used to induce germination of three Orobanche species; Orobanche minor, Orobanche cumana, and Orobanche aegyptiaca. O. minor exhibited a wide range of germination responses to the various herbal extracts. O. cumana and O. aegyptiaca exhibited an intermediate germination response to the herbal extracts. O. minor, which has a narrow host spectrum, showed higher germination rates in response to different herbal extracts compared with those of O. cumana and O. aegyptiaca, which have a broader host spectrum. Methanolic extracts of many Chinese herbal species effectively stimulated seed germination among the Orobanche spp., even though they were not the typical hosts. The effective herbs represent interesting examples of potential trap crops. Different countries can also screen extracts from indigenous herbaceous plants for their ability to induce germination of Orobanche spp. seeds. The use of such species as trap plants could diminish the global soil seed bank of Orobanche.  相似文献   

13.
Many biotypes of Lolium rigidum Gaud, (annual ryegrass) have developed resistance to herbicides; however, few have developed resistance to phenylurea herbicides. Two biotypes with different histories of herbicide selection pressure were six to eight times less sensitive to the phenylurea herbicide, chlorotoluron, than a susceptible biotype. Resistance was not due to differences in the herbicide target site as oxygen evolution by thylakoids isolated from resistant and susceptible biotypes was similarly inhibited by diuron and chlorotoluron. There was no difference in the uptake and distribution of chlorotoluron into resistant and susceptible plants. There was a twofold greater rate of chlorotoluron detoxification in resistant plants with N-demethylation being a major detoxification reaction. Resistant plants treated with a 3-h pulse of 120 M chlorotoluron recovered net carbon fixation after 42 h, half the time taken by susceptible plants. The mixed-function oxidase inhibitor 1-aminobenzotriazole (70 M) intensified the effects of chlorotoluron in resistant plants when applied in combination with the herbicide for 7 d. 1-Aminobenzotriazole also inhibited the metabolism of chlorotoluron in both resistant and susceptible plants. The cytochrome P-450 inhibitor, piperonyl butoxide piperonyl butoxide, interacted with chlorotoluron when applied to plants growing in soil. Chlorotoluron applied with reduced plant dry weight to a greater extent than chlorotoluron alone. It appears, therefore, that enhanced detoxification is the major mechanism of resistance to chlorotoluron in the resistant biotypes studied.Abbreviations ABT 1-aminobenzotriazole - VLR1 Victorian L. rigidum biotype 1 — herbicide susceptible - VLR69 Victorian L. rigidum biotype 69 — herbicide resistant - WLR2 Western Australian L. rigidum biotype 2 — herbicide resistant M.W.M.B, was supported by an Australian Postgraduate Research Award and a supplementary scholarship from the Grains Research and Development Corporation. We are very grateful to Dr. E. Ebert, Ciba Geigy, Basal, Switzerland for providing [14C]chlorotoluron and standards of chlorotoluron metabolites. We express our gratitude to Dr. John Huppatz of the CSIRO Division of Plant Industry for providing ABT. We also thank Ciba Geigy Australia for providing technical-grade chlorotoluron and formulated phenylurea herbicides.  相似文献   

14.
S. Singh  P. Datta 《Plant and Soil》2007,296(1-2):95-102
Application of diazotrophic cyanobacteria, Anabaena variabilis, as biofertilizer for rice cultivation has a beneficial effect on crop productivity and maintenance of soil fertility. However, periodic applications of herbicides used to obtain high crop productivity are not only detrimental to weeds but to biofertilizer strains of cyanobacteria also. Therefore, research was undertaken to isolate four herbicide resistant strains (Arozin-R, Alachlor-R, Butachlor-R and 2,4-D-R) and a multiple herbicide resistant strain (MHR) of natural isolates of A. variabilis exhibiting resistance against these common rice field herbicides. The outdoor survivability of mutant strains and the productivity of rice crop (IR-36) were evaluated by inoculating the wild type and herbicide resistant mutant strains of A. variabilis in the presence and absence of recommended field dosages of test herbicides. No difference in survival and biofertilizer potentials of the herbicide resistant strains was observed in herbicide treated or in untreated conditions. Highest survivability (87%) was exhibited by MHR relative to other mutants. Highest growth and grain yield (76%) were recorded in plants treated with MHR as compared to uninoculated control rice plants. In conclusion, the mutant strains of A. variabilis had stable resistance to herbicides under outdoor conditions in flooded soils. Not only did the herbicide resistance strains increase growth of rice relative to the uninoculated pots, they were more beneficial for rice growth than the wild type strain. Responsible Editor: Richard W. Bell.  相似文献   

15.
Most investigations on genetic transformations of sunflower have used the neomycin transferase (nptII) gene as the selectable marker. We previously reported a PPT-based selection system for sunflower transformation that uses the bialaphos resistance (bar) gene as the selectable marker and 20 mg/l of phosphinothricin (PPT) as the selective agent. Sunflower (Helianthus annuus L.) variety Skorospeliy 87 was genetically transformed via Agrobacterium tumefaciens strain EHA 105 harbouring the binary plasmid vector pBAR. Two-day-old explants from mature embryos competent for direct shooting were used. Southern blot and ELISA experiments confirmed the stability of expression in two generations of transgenic plants. Transformed plants transferred to soil in the greenhouse exhibited resistance to the herbicide Basta? at 3 l/ha.  相似文献   

16.
Manipulation of the cellulose biosynthetic machinery in plants has the potential to provide insight into plant growth, morphogenesis and to create modified cellulose for anthropogenic use. Evidence exists that cellulose microfibril structure and its recalcitrance to enzymatic digestion can ameliorated via mis‐sense mutation in the primary cell wall–specific gene AtCELLULOSE SYNTHASE (CESA)3. This mis‐sense mutation has been identified based on conferring drug resistance to the cellulose inhibitory herbicide isoxaben. To examine whether it would be possible to introduce mutant CESA alleles via a transgenic approach, we overexpressed a modified version of CESA3, AtCESA3ixr1‐2 derived from Arabidopsis thaliana L. Heynh into a different plant family, the Solanceae dicotyledon tobacco (Nicotiana tabacum L. variety Samsun NN). Specifically, a chimeric gene construct of CESA3ixr1‐2, codon optimized for tobacco, was placed between the heterologous M24 promoter and the rbcSE9 gene terminator. The results demonstrated that the tobacco plants expressing M24‐CESA3ixr1‐2 displayed isoxaben resistance, consistent with functionality of the mutated AtCESA3ixr1‐2 in tobacco. Secondly, during enzymatic saccharification, transgenic leaf‐ and stem‐derived cellulose is 54%–66% and 40%–51% more efficient, respectively, compared to the wild type, illustrating translational potential of modified CESA loci. Moreover, the introduction of M24‐AtCESA3ixr1‐2 caused aberrant spatial distribution of lignified secondary cell wall tissue and a reduction in the zone occupied by parenchyma cells.  相似文献   

17.
The effects of Fusarium oxysporum f. sp. orthoceras as a mycoherbicide on broomrape, a weedy parasite of tomato crops, were examined during two growing seasons under field conditions. In contrast to emerged broomrapes in treated plots, none of the tomato plants inoculated with fungal pathogen showed Fusarium-wilt symptoms. In 2008, both suspension concentrations, 1?×?106 and 1?×?107 spore/ml, used via either root-dip or soil-inoculation three weeks after transplanting, and high-concentration-soil-inoculation one week after transplanting, reduced the number of broomrape plant and shoots per plant compared to the control. In 2009, single-point-low-dose and twice-high-dose applications of sulfosulfuron had significantly fewer broomrape plants than high-concentration-soil-inoculation three weeks after transplanting. High-concentration-root-dip inoculation decreased broomrape biomass weight significantly by 58% compared to the control in 2008. In 2009, mean biomass for single-point-application of sulfosulfuron at 50 and 75?g levels was lower than control. The highest yield was detected in high-concentration-soil-inoculation at transplanting in 2008 and in low-dose-twice-application of sulfosulfuron in 2009. Tomato yield was associated with the number of broomrape shoots per plant. There is promise that these field-scale findings will improve attempts to use mycoherbicides for biocontrol of broomrapes in tomato cropping systems.  相似文献   

18.
Pre-emergence soil application of the herbicide diphenamid in concentrations exceeding the normal field rate increased the resistance of tomato plants towards infection by the wilt fungus Fusarium oxysporum f.sp. lycopersici. This was detected as significant increases in the percentage emergence of seedlings although growth parameters of the raised seedlings were reduced. Treated plants exhibited no wilt symptoms, although the pathogen maintained its population at detectable levels in the rhizosphere of tomato plants. However, the growth inhibition caused by diphenamid alone was much less than that reported for the combined application of pathogen and herbicide. Growth activities of F. oxysporum f.sp. lycopersici were inhibited by high concentrations of diphenamid in vitro. It is possible that the biodegradation of this herbicide by species such as Aspergillus candidus (present in substantial counts in treated rhizospheres) was one of the causes of increased tolerence of the pathogen to the herbicide in situ.  相似文献   

19.
Parasitic plants develop a haustorium that intrudes host tissues.In roots of transgenic PRb-1b-GUS tobacco the expression ofthe chimeric gene was prominent nearOrobancheinfection. Theexpression of the pathogenesis related (PR) protein gene inOrobanche-infectedroots indicates thatOrobanchereleases appropriate elicitors,and that the susceptible plant does senseOrobancheinvasion.TheOrobanche-responsive promoter may be a useful tool in engineeringresistances to this parasitic weed.Copyright 1998 Annals ofBotany Company Haustorium,Nicotiana tabacum, Orobanche aegyptiaca, parasitic plants, PR proteins, tobacco.  相似文献   

20.
Gene flow promotes genetic exchange among plant populations mediating evolutionary dynamics; yet, the importance of gene flow at distance via pollen movement is poorly understood. A field experiment at the landscape level was conducted with Lolium rigidum herbicide-susceptible individuals (population VLR1) placed into an otherwise Lolium-free bushland environment at increasing distances from adjacent large commercial crop fields infested with herbicide-resistant L. rigidum. Herbicide resistance was used as a marker to quantify the distance and the rate of pollen-mediated gene flow. About 21,245 seeds were produced on the isolated, susceptible mother plants of which 3,303 seedlings were tested for herbicide resistance and 664 seedlings were found to be resistant. Pollen-mediated gene flow occurred at 3,000 m (maximum tested distance). Both Mendelian and molecular analyses (sequencing and CAPS markers) confirmed the introgression of herbicide resistance genes. This is the first documented case of long-distance gene flow in L. rigidum. The results are important for future modeling simulations of herbicide resistance evolution and subsequent mobility. The adoption of integrated agronomic strategies, the control of potential receptor plants on fields’ margins and conservative use of herbicides can be realistic options to minimize herbicide resistance spread. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号