首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plasminogen receptors have been identified on the surface of a number of prokaryotic and eukaryotic cells. A receptor demonstrating high affinity for plasmin with minimal reactivity with the native zymogen Glu-plasminogen has been identified on the surface of certain group A streptococci. In this study the group A streptococcal plasmin receptor has been solubilized and purified to homogeneity. The isolated protein was an Mr approximately 41,000 molecule which retained its ability to bind plasmin following solubilization and affinity purification on a column of enzymatically inactivated human plasmin. The isolated plasmin receptor was compared functionally, antigenically, and physicochemically to the secreted plasminogen activator, streptokinase, produced by the same organism. The Mr approximately 41,000 surface plasmin receptor was shown to be functionally and antigenically distinct from the Mr approximately 48,000 streptokinase molecule produced by the same strain and lacked any plasminogen activator activity. The streptokinase molecule produced by this strain was shown to be closely related to the plasminogen activator protein secreted by other group A and C streptococci. This study represents the first report of the isolation of a plasmin receptor, either prokaryotic or eukaryotic, with functional activity.  相似文献   

3.
Oral streptococci are a heterogeneous group of human commensals, with a potential to cause serious infections. Activation of plasminogen has been shown to increase the virulence of typical human pathogenic streptococci such as S. pneumoniae. One important factor for plasminogen activation is the streptococcal α-enolase. Here we report that plasminogen activation is also common in oral streptococci species involved in clinical infection and that it depends on the action of human plasminogen activators. The ability to activate plasminogen did not require full conservation of the internal plasminogen binding sequence motif FYDKERKVY of α-enolase that was previously described as crucial for increased plasminogen binding, activation and virulence. Instead, experiments with recombinant α-enolase variants indicate that the naturally occurring variations do not impair plasminogen binding. In spite of these variations in the internal plasminogen binding motif oral streptococci showed similar activation of plasminogen. We conclude that the pathomechanism of plasminogen activation is conserved in oral streptococci that cause infections in human. This may contribute to their opportunistic pathogenic character that is unfurled in certain niches.  相似文献   

4.
Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and their inhibitors from mammalian cells. The prokaryotic plasminogen activators streptokinase and staphylokinase form a complex with plasmin(ogen) and thus enhance plasminogen activation. The Pla surface protease of Yersinia pestis resembles mammalian activators in function and converts plasminogen to plasmin by limited proteolysis. In essence, plasminogen receptors and activators turn bacteria into proteolytic organisms using a host-derived system. In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors. In Gram-positive bacteria, surface-bound enzyme molecules as well as M-protein-related structures have been identified as plasminogen receptors, the former receptor type also occurs on mammalian cells. Plasmin is a broad-spectrum serine protease that degrades fibrin and noncollagenous proteins of extracellular matrices and activates latent procollagenases. Consequently, plasmin generated on or activated by Haemophilus influenzae, Salmonella typhimurium, Streptococcus pneumoniae, Y. pestis, and Borrelia burgdorferi has been shown to degrade mammalian extracellular matrices. In a few instances plasminogen activation has been shown to enhance bacterial metastasis in vitro through reconstituted basement membrane or epithelial cell monolayers. In vivo evidence for a role of plasminogen activation in pathogenesis is limited to Y. pestis, Borrelia, and group A streptococci. Bacterial proteases may also directly activate latent procollagenases or inactivate protease inhibitors of human plasma, and thus contribute to tissue damage and bacterial spread across tissue barriers.  相似文献   

5.
Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.  相似文献   

6.
Streptokinase is an extracellular protein produced by several strains of streptococci. It functions in the species-specific conversion of plasminogen to plasmin. In this paper we describe the purification of streptokinase by affinity chromatography on human plasminogen acylated with p'-nitrophenyl p-guanidinobenzoate. The acylated and non-acylated plasminogen and plasmin were coupled to cyanogen bromide-activated Sepharose 4B and evaluated for streptokinase purification. These results show that a homogeneous preparation of streptokinase with high specific activity and high yield can be obtained using acylated plasminogen. This method permits the binding of one milligram of streptokinase per milliliter of swollen gel.  相似文献   

7.
Streptococcus pyogenes (group A streptococcus, GAS) secretes streptokinase, a potent plasminogen activating protein. Among GAS isolates, streptokinase gene sequences (ska) are polymorphic and can be grouped into two distinct sequence clusters (termed cluster type‐1 and cluster type‐2) with cluster type‐2 being further divided into sub‐clusters type‐2a and type‐2b. In this study, far‐UV circular dichroism spectroscopy indicated that purified streptokinase variants of each type displayed similar secondary structure. Type‐2b streptokinase variants could not generate an active site in Glu‐plasminogen through non‐proteolytic mechanisms while all other variants had this capability. Furthermore, when compared with other streptokinase variants, type‐2b variants displayed a 29‐ to 35‐fold reduction in affinity for Glu‐plasminogen. All SK variants could activate Glu‐plasminogen when an activator complex was preformed with plasmin; however, type‐2b and type‐1 complexes were inhibited by α2‐antiplasmin. Exchanging skatype‐2a in the M1T1 GAS strain 5448 with skatype‐2b caused a reduction in virulence while exchanging skatype‐2a with skatype‐1 into 5448 produced an increase in virulence when using a mouse model of invasive disease. These findings suggest that streptokinase variants produced by GAS isolates utilize distinct plasminogen activation pathways, which directly affects the pathogenesis of this organism.  相似文献   

8.
Summary The formation of stable equimolar complexes of streptokinase or plasminogen with muscle lactate dehydrogenase or pyruvate kinase, heart mitochondrial malate dehydrogenase and hepatic catalase at pH 7.4, 3.0 and 10.0 was first detected by differential spectroscopy methods. All complexes, except those of plasminogen with dehydrogenases, were resistant to 6 M urea. Judging from circular dichroism spectra, tertiary and secondary structures were considerably changed in the complexes. These changes were significantly dependent upon the nature of interacting proteins; in some cases their structures were more ordered. NAD (but not NADH) hampered the formation of streptokinase complexes with dehydrogenases. The plasminogen-activating function of streptokinase and the ability of plasminogen to be activated by streptokinase in the complexes with oxidoreductases were essentially unchanged. Pyruvate kinase induced a moderate (by 35%) increase in the streptokinase activating function. It is assumed that the formation of complexes of streptokinase or plasminogen with enzymes may serve as a link in metabolic regulation and/or intercellular interactions.  相似文献   

9.
The migration of the human pathogen Streptococcus pyogenes (group A streptococcus) from localized to deep tissue sites may result in severe invasive disease, and sequestration of the host zymogen plasminogen appears crucial for virulence. Here, we describe a novel plasminogen-binding M protein, the plasminogen-binding group A streptococcal M protein (PAM)-related protein (Prp). Prp is phylogenetically distinct from previously described plasminogen-binding M proteins of group A, C, and G streptococci. While competition experiments indicate that Prp binds plasminogen with a lower affinity than PAM (50% effective concentration = 0.34 microM), Prp nonetheless binds plasminogen with high affinity and at physiologically relevant concentrations of plasminogen (K(d) = 7.8 nM). Site-directed mutagenesis of the putative plasminogen binding site indicates that unlike the majority of plasminogen receptors, Prp does not interact with plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues Lys(96) and Lys(101) reduced but did not abrogate plasminogen binding by Prp. Plasminogen binding was abolished only with the additional mutagenesis of Arg(107) and His(108) to alanine. Furthermore, mutagenesis of Arg(107) and His(108) abolished plasminogen binding by Prp despite the presence of Lys(96) and Lys(101) in the binding site. Thus, binding to plasminogen via arginine and histidine residues appears to be a conserved mechanism among plasminogen-binding M proteins.  相似文献   

10.
11.
In addition to beta-haemolytic streptococci belonging to Lancefield group A (Streptococcus pyogenes, GAS), human isolates of group C (GCS) and group G (GGS) streptococci (S. dysgalactiae subsp. equisimilis) have been implicated as causative agents in outbreaks of purulent pharyngitis, of wound infections and recently also of streptococcal toxic shock-like syndrome. Very little is known about the organisation of the genomic region in which the emm gene of GCS and GGS is located. We have investigated the genome sequences flanking the emm gene in GCS by sequencing neighbouring fragments obtained by inverse PCR. Our sequence data for GCS strains 25287 and H46A revealed two types of arrangement in the emm region, which differ significantly from the known types of mga regulon in GAS. We named this segment of the genome mgrC (for multigene regulon-like segment in group C streptococci). In strains belonging to the first mgrC type (prototype strain 25287) the emm gene is flanked up-stream by mgc, a gene that is 61% identical to the mga gene of GAS. A phylogenetic analysis of the deduced protein sequences showed that Mgc is related to Mga proteins of various types of GAS but forms a distinct cluster. Downstream of emm, the mgrC sequence region is bordered by rel. This gene encodes a protein that functions in the synthesis and degradation of guanosine 3',5' bipyrophosphate (ppGpp) during the stringent regulatory response to amino acid deprivation. In the second mgrC type (prototype strain H46A), the genes mgc and emm are arranged as in type 1. But an additional ORF (orf) is inserted in opposite orientation between emm and rel. This orf shows sequence homology to cpdB, which is present in various microorganisms and encodes 2',3' cyclo-nucleotide 2'-phosphodiesterase. PCR analysis showed that these two mgrC arrangements also exist in GGS. Our sequence and PCR data further showed that both types of mgrC region in GCS and GGS are linked via rel to the streptokinase region characterised recently in strain H46A. A gene encoding C5a peptidase, which is present at the 3' end of the mga regulon in GAS, was not found in the mgrC region identified in the GCS and GGS strains investigated here.  相似文献   

12.
The NH2-terminal sequence of type 1 M protein was determined by automated Edman degradation of purified polypeptide fragments extracted from whole streptococci by limited digestion with pepsin. Three polypeptide fragments were purified by slab gel electrophoresis on sodium dodecyl sulfate (SDS) polyacrylamide followed by electroelution. The purified fragments migrated as 28-, 25-, and 23.5-kDa fragments, respectively. Each of the fragments inhibited opsonization of a diluted antiserum prepared in rabbits by immunization with whole type 1 streptococci. The amino-terminal sequences of the peptide fragments were confirmed by comparison with the primary structure predicted from the nucleotide sequence of the type 1 M protein structural gene. The 28-kDa fragment contained the NH2-terminal asparagine residue of the processed type 1 M protein, whereas the NH2-terminal sequences of the 25- and 23.5-kDa peptides began at residues 27 and 36, respectively. A seven-residue periodicity with respect to polar and nonpolar residues was observed beginning at residue 22 and, therefore, the secondary structural potential of type 1 M protein is similar to that reported for other M proteins. In contrast to the other M proteins, however, identical repeats were rare, the longest sequence identity consisting of a three-amino acid acid sequence Lys-Asp-Leu at positions 30-32 repeated once at positions 65-67. A 23-residue synthetic peptide of the amino-terminus of the type 1 M protein evoked opsonic antibodies against type 1 streptococci. These results indicate that the NH2-terminal region of type 1 M protein retains the secondary structural characteristics of other M serotypes. Moreover, it contains epitopes that evoke protective immune responses. Our studies may have bearing in the development of safe and effective vaccines against group A streptococcal infections.  相似文献   

13.
A functionally active human microplasminogen without kringle structures was produced by incubation of plasminogen with urokinase-free plasmin at an alkaline pH. The microplasminogen was purified by affinity chromatography on lysine- and soybean trypsin inhibitor-Sepharose and by chromofocusing. Human plasminogen is specifically cleaved at Arg529-Lys530 by plasmin to form microplasminogen, which consists of a single polypeptide of 261 residues from the COOH-terminal portion of native plasminogen. It has an Mr of 28,617, calculated from the sequence, which is consistent with the molecular weight determined by sodium dodecyl sulfate gel electrophoresis. Microplasminogen is a slightly basic protein and is eluted from a chromofocusing column at pH 8.3. It can be activated by urokinase and streptokinase to a catalytically active microplasmin. The specific amidolytic activity of microplasmin is about three times higher than Lys77-plasmin on a weight basis and is about the same on a molar basis. The activation of microplasminogen by streptokinase is slower than that of either Glu-plasminogen or Lys77-plasminogen. On the other hand, the activation of microplasminogen by urokinase is faster than that of either of the latter. The Arg560-Val561 bond is cleaved during activation of both microplasminogen and native plasminogen.  相似文献   

14.
Localization of the human plasminogen binding site on the streptokinase of complementary Val709-Glu724 plasminogen being crucial one in providing for the plasminogen streptokinase complex activity has been investigated. Experiments were performed with streptokinase fragments and synthetic decapeptides, antiplasminogen monoclonal anti-body IV-1c and synthetic peptide corresponding to Val709-Gly718 sequence of human plasminogen. It was found that plasminogen sequence Val709-Glu724 interacted with Thr361-Arg372 sequence of strepto-kinase.  相似文献   

15.
Group A streptococci (GAS) display receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M protein (PAM). Characterization of PAM genes from 12 GAS isolates showed significant variation within the plasminogen-binding repeat motifs (a1/a2) of this protein. To determine the impact of sequence variation on protein function, recombinant proteins representing five naturally occurring variants of PAM, together with a recombinant M1 protein, were expressed and purified. Equilibrium dissociation constants for the interaction of PAM variants with biotinylated Glu-plasminogen ranged from 1.58 to 4.99 nm. Effective concentrations of prototype PAM required for 50% inhibition of plasminogen binding to immobilized PAM variants ranged from 0.68 to 22.06 nm. These results suggest that although variation in the a1/a2 region of the PAM protein does affect the comparative affinity of PAM variants, the functional capacity to bind plasminogen is conserved. Additionally, a potential role for the a1 region of PAM in eliciting a protective immune response was investigated by using a mouse model for GAS infection. The a1 region of PAM was found to protect immunized mice challenged with a PAM-positive GAS strain. These data suggest a link between selective immune pressure against the plasminogen-binding repeats and the functional conservation of the binding domain in PAM variants.  相似文献   

16.
Summary Two genes coding for cell surface proteins were cloned from a group A streptococcus type M4: the gene for an IgA binding protein and the gene for a fibrinogen binding protein. Both proteins were purified and partially characterized after expression in Escherichia coli. There was no immunological cross-reaction between the two proteins. The IgA binding protein, called protein Arp4, is similar to an IgA receptor previously purified from another strain of group A streptococci, but the proteins are not identical. Characterization of many independent clones showed that the two proteins described here are coded for by closely linked genes. Bacterial mutants have been found which have simultaneously lost the ability to express both genes, and a simple method to isolate such mutants is described. The existence of these variants indicates that expression of the two cell surface proteins may be coordinately regulated. Binding of fibrinogen is a characteristic property of streptococcal M proteins, and the available evidence suggests that the fibrinogen binding protein is indeed an M protein.  相似文献   

17.
The short in vivo half-life of streptokinase limits its efficacy as an efficient blood clot-dissolving agent. During the clot-dissolving process, streptokinase is processed to smaller intermediates by plasmin. Two of the major processing sites are Lys59 and Lys386. We engineered two versions of streptokinase with either one of the lysine residues changed to glutamine and a third version with both mutations. These mutant streptokinase proteins (muteins) were produced by secretion with the protease-deficient Bacillus subtilis WB600 as the host. The purified muteins retained comparable kinetics parameters in plasminogen activation and showed different degrees of resistance to plasmin depending on the nature of the mutation. Muteins with double mutations had half-lives that were extended 21-fold when assayed in a 1:1 molar ratio with plasminogen in vitro and showed better plasminogen activation activity with time in the radial caseinolysis assay. This study indicates that plasmin-mediated processing leads to the inactivation of streptokinase and is not required to convert streptokinase to its active form. Plasmin-resistant forms of streptokinase can be engineered without affecting their activity, and blockage of the N-terminal cleavage site is essential to generate engineered streptokinase with a longer in vitro functional half-life.  相似文献   

18.
The present studies were undertaken to identify conserved epitopes of group A streptococcal M proteins that evoke cross-protective mucosal immune responses. Two synthetic peptides copying conserved regions of type 5 M protein, designated SM5(235-264)C and SM5(265-291)C, were covalently linked to carrier molecules and their immunogenicity was tested in laboratory animals. Rabbit antisera against both peptides cross-reacted with multiple serotypes of group A streptococci, indicating that the peptides contained broadly cross-reactive, surface exposed M protein epitopes. Serum antipeptide antibodies adsorbed to the surface of heterologous type 24 streptococci passively protected mice against intranasal challenge infections. Mice that were actively immunized intranasally with each synthetic peptide covalently linked to the B subunit of cholera toxin were protected against colonization and death after intranasal challenge infections with type 24 streptococci in the absence of serum opsonic antibodies. These data confirm and extend previous observations that conserved M protein epitopes evoke cross-protective local immunity and may serve as the basis for broadly cross-protective M protein vaccines.  相似文献   

19.
Several pathogenic bacteria secrete plasminogen activator proteins. Streptokinase (SKe) produced by Streptococcus equisimilis and staphylokinase secreted from Staphylococcus aureus are human plasminogen activators and streptokinase (SKu), produced by Streptococcus uberis, is a bovine plasminogen activator. Thus, the fusion proteins among these activators can explain the function of each domain of SKe. Replacement of the SKalpha domain with staphylokinase donated the staphylokinase-like activation activity to SKe, and the SKbetagamma domain played a role of nonproteolytic activation of plasminogen. Recombinant SKu also activated human plasminogen by staphylokinase-like activation mode. Because SKu has homology with SKe, the bovine plasminogen activation activities of SKe fragments were checked. SKebetagamma among them had activation activity with bovine plasminogen. This means that the C-terminal domain (gamma-domain) of streptokinase determines plasminogen species necessary for activation and converses the ability of substrate recognition to human species.  相似文献   

20.
A series of methods for analyzing the interaction of group A streptococci with the human plasminogen system are described. Examples of group A streptococcal isolates capable of assembling surface plasminogen activator activity when grown in human plasma are presented and the key requirements for this process are evaluated. The stabilities of cell-associated plasmin and plasminogen activator complexes are compared and a model for the interaction of group A streptococci with the plasminogen system in an infected host is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号