首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1988,107(6):2199-2212
Nebulin, a giant myofibrillar protein (600-800 kD) that is abundant (3%) in the sarcomere of a wide range of skeletal muscles, has been proposed as a component of a cytoskeletal matrix that coexists with actin and myosin filaments within the sarcomere. Immunoblot analysis indicates that although polypeptides of similar size are present in cardiac and smooth muscles at low abundance, those proteins show no immunological cross-reactivity with skeletal muscle nebulin. Gel analysis reveals that nebulins in various skeletal muscles of rabbit belong to at least two classes of size variants. A monospecific antibody has been used to localize nebulin by immunoelectron microscopy in a mechanically split rabbit psoas muscle fiber preparation. Labeled split fibers exhibit six pairs of stripes of antibody-imparted transverse densities spaced at 0.1-1.0 micron from the Z line within each sarcomere. These epitopes maintain a fixed distance to the Z line irrespective of sarcomere length and do not exhibit the characteristic elastic stretch-response of titin epitopes within the I band domain. It is proposed that nebulin constitutes a set of inextensible filaments attached at one end to the Z line and that nebulin filaments are in parallel, and not in series, with titin filaments. Thus the skeletal muscle sarcomere may have two sets of nonactomyosin filaments: a set of I segment-linked nebulin filaments and a set of A segment-linked titin filaments. This four-filament sarcomere model raises the possibility that nebulin and titin might act as organizing templates and length- determining factors for actin and myosin respectively.  相似文献   

2.
Glycogen synthase has been purified from bovine heart to near homogeneity by a procedure including zonal sucrose gradient ultracentrifugation. The purified enzyme had a subunit molecular weight of 88,000 ± 2000, an ID ratio of between 0.8 and 1.0, and contained less than 0.1 mol of covalently bound phosphate per mole of subunit. The rates, extent, and sites of phosphorylation of the cardiac enzyme were compared with those of skeletal muscle glycogen synthase as catalyzed by both the cardiac cAMP-dependent and a cardiac cAMP-independent protein kinases. The cardiac glycogen synthase was phosphorylated up to 1 mol of phosphate/mol of subunit by the cAMP-dependent protein kinase, to at least 2 mol of phosphate/mol of subunit by the cAMP-independent protein kinase, and to at least 3 mol of phosphate/mol of subunit with the two protein kinases together. There was a linear correlation between the extent of phosphorylation and conversion of cardiac synthase I to the glucose 6-phosphate-dependent form. This correlation was independent of which kinase(s) catalyzed the phosphorylation. Maximum inactivation occurred at an incorporation of 2 mol of phosphate per subunit. Under equivalent conditions, the rates of phosphorylation of cardiac and skeletal muscle glycogen synthase by the cAMP-dependent protein kinase were identical. In contrast, the cardiac enzyme was phosphorylated at a faster rate by the homologous cardiac cAMP-independent protein kinase than was the skeletal muscle synthase by the latter cardiac protein kinase. Analysis of the sites of phosphorylation of the cardiac and skeletal muscle glycogen synthases by CNBr cleavage and trypsin hydrolysis indicated minor differences in the derived phosphopeptides.  相似文献   

3.
Homogeneous preparations of fructose-1,6-bisphosphatase from mouse, man, rabbit, pig, and rat were tested as substrates for cyclic AMP-dependent protein kinase. Up to 1 mol of [32P]phosphate per mole enzyme subunit was incorporated into fructose-1,6-bisphosphatase from pig and rabbit liver, which should be compared with 2.6 mol of phosphate per mole enzyme subunit in the case of the rat liver enzyme. The phosphorylation of fructose-1,6-bisphosphatase from the livers of man and mouse was negligible. Phosphorylation of pig and rabbit fructose-1,6-bisphosphatase decreased the apparent Km for fructose-1,6-bisphosphate, but in contrast to the case of the rat liver enzyme it did not change the inhibition constants for AMP and fructose-2,6-bisphosphate. The phosphorylation sites in rabbit and pig liver fructose-1,6-bisphosphatase were located close to the carboxyterminal of the polypeptide chains, since trypsin treatment of the phosphorylated enzyme quantitatively removed all of the protein-bound radioactivity without significantly altering the subunit molecular weight and with a maintained neutral pH optimum.  相似文献   

4.
Microtubule-associated protein 2 (MAP 2) is the major substrate for phosphorylation in purified preparations of brain microtubules. In earlier work, we showed that phosphorylation is catalyzed by a type II cAMP-dependent protein kinase tightly associated with MAP 2 itself. In the present study, we have examined the extent of MAP 2 phosphorylation by its associated protein kinase. Using an inorganic phosphate assay, we found that MAP 2 contained from 8 to 13 mol of phosphate/mol of protein as isolated. The catalytic subunit of the MAP 2-associated kinase catalyzed the incorporation of additional phosphate to a final level of 20-22 mol/mol of MAP 2. Potato acid phosphatase was used to remove phosphate from MAP 2. Rephosphorylation of acid phosphatase-treated MAP 2 resulted in maximal incorporation of 13 mol of phosphate/mol of MAP 2. The rates and extent of [32P] phosphate incorporation into as isolated and dephosphorylated MAP 2 were found to be identical, and phosphate was incorporated into identical peptides in the two preparations. These results were interpreted to indicate that MAP 2 contains as many as 13 cAMP-dependent phosphorylation sites, and approximately eight phosphates of as yet undetermined origin.  相似文献   

5.
The influence of phosphorylation in vitro of the sarcomere cytoskeletal proteins titin and X-protein of skeletal muscles as well as C-protein of cardiac muscle of ground squirrel Citellus undulatus on the actin-activated ATPase activity of myosin and its Ca2+ sensitivity was studied. It was shown that phosphorylation lowers the activating effect of titin and C-protein and increases the inhibitory effect of X-protein on the enzymatic properties of actomyosin. The phosphorylation of the proteins has the most pronounced influence on Ca2+ sensitivity of actomyosin: it drops to a greater extent in the presence of phosphorylated C-protein and titin and is completely inhibited by phosphorylated X-protein. The inhibitory influence of phosphorylation in vitro of sarcomere cytoskeletal proteins on the above functional properties of the actomyosin system as well as the increase in the extent of phosphorylation of titin in vivo upon hibernation allow one to conclude that this posttranslation modification contributes to adaptive mechanisms of suppression of the contractile ability of muscles in this period.  相似文献   

6.
Complete conversion of skeletal muscle glycogen synthetase from the I form to the D form requires incorporation of 2 mol of phosphate per enzyme subunit (90,000 g). Incubation of sythetase I with low concentrations of adenosine 3':5'-monophosphate(cAMP)-dependent protein kinase (10 units/ml) and ATP (0.1 to 0.3 mM) plus magnesium acetate (10 mM) results in incorporation within 1/2 hour of 1 mol of phosphate persubunit concomitant with a decrease in the synthetase activity ratio (minus glucose-6-P/plus glucose-6-P) from 0.85 to 0.25. Further incubation for 6 hours does not greatly increase the phosphate content of the synthetase or promote conversion to the D form. This level of phosphorylation is not increased by raising the concentration of protein kinase to 150 units/ml and is not influenced by the presence of glucose-6-P, UDP-glucose, or glycogen. However, at protein kinase concentrations of 10,000 to 30,000 units/ml a second mol of phosphate is incorporated per subunit, and the sythetase activity ratio decreases to 0.05 or less. In addition to the 2 mol of phosphate persubunit which are required for formation of sythetase D, further phosphorylation can be observed which is not associated with changes in synthetase activity. This phosphorylation occurs at a slow rate, is increased by raising the ATP concentration to 2 to 4mM, and is not blocked by the heat-stable protein inhibitor of cAMP-dependent protein kinase. These data indicate that skeletal muscle glycogen synthetase contains multiple phosphorylation sites only two of which are involved in the synthetase I to D conversion.  相似文献   

7.
The catalytic subunit of cyclic AMP-dependent protein kinase catalyzes the phosphorylation of rabbit skeletal muscle phosphofructokinase. The reaction is inhibited by the specific inhibitor of protein kinase and proceeds at about 2% the rate observed with phosphorylase kinase but more rapidly than with rat liver fructose bisphosphatase as substrate. Maximum extent of incorporation (0.43 to 0.85 moles per mole of protomer) plus the covalently-bound phosphate present in the isolated enzyme (0.20 to 0.34 moles per mole) approaches one mole per mole.  相似文献   

8.
The phosphorylation and dephosphorylation of specific proteins was demonstrated directly in the intact vertebrate nervous system in vivo. By exploiting the neurons' ability to segregate a select group of cytoskeletal proteins from most other phosphorylated constituents of the cell by axoplasmic transport, we were able to examine the dynamics of phosphate turnover on neurofilament proteins in mouse retinal ganglion cell neurons simultaneously labeled with [32P]orthophosphate and [3H]proline in vivo. Three [3H]proline-labeled neurofilament protein (NFP) subunits, designated H (160-200 kDa), M (135-145 kDa), and L (68-70 kDa), entered optic axons in a mole:mole ratio similar to that of isolated axonal neurofilaments, supporting the notion that newly synthesized NFPs are transported along axons as assembled neurofilaments. NFP subunits incorporated high levels of 32P before reaching axonal sites at the level of the optic nerve. As neurofilaments were transported along axons, however, many initially incorporated [32P]phosphate groups were removed. Loss of these phosphate groups occurred to a different extent on each subunit. A minimum of 50-60 and 35-40% of the labeled phosphate groups was removed in a 5-day period from the L and M subunits, respectively. By contrast, the H subunit exhibited relatively little or no phosphate turnover during the same period. Dephosphorylation of L in axons is accompanied by a decrease in its net state of phosphorylation; changes in the phosphorylation state of H and M, however, also reflect ongoing addition of phosphates to these polypeptides during axonal transport (Nixon, R.A., Lewis, S.E., and Marotta, C.A. (1986) J. Neurosci., in press). The possibility is raised that dynamic rearrangements of phosphate topography on NFPs represent a mechanism to coordinate interactions of neurofilaments with other proteins as these elements are transported and incorporated into the stationary cytoskeleton along retinal ganglion cell axons.  相似文献   

9.
The ability of the wheat germ initiation factors and ribosomes to serve as substrates for a wheat germ protein kinase (Yan and Tao 1982 J Biol Chem 257: 7037-7043) has been investigated. The wheat germ kinase catalyzes the phosphorylation of the 42,000 dalton subunit of eukaryotic initiation factor (eIF)-2 and the 107,000 dalton subunit of eIF-3. Other initiation factors, eIF-4B and eIF-4A, and elongation factors, EF-1 and EF-2, are not phosphorylated by the kinase. Quantitative analysis indicates that the kinase catalyzes the incorporation of about 0.5 to 0.6 mole of phosphate per mole of the 42,000 dalton subunit of eIF-2 and about 6 moles of phosphate per mole of the 107,000 dalton subunit of eIF-3. Three proteins (Mr = 38,000, 14,800, and 12,600) of the 60S ribosomal subunit are phosphorylated by the kinase, but none of the 40S ribosomal proteins are substrates of the kinase. No effects of phosphorylation on the activities of eIF-2, eIF-3, or 60S ribosomal subunits could be demonstrated in vitro.  相似文献   

10.
Ma K  Wang K 《FEBS letters》2002,532(3):273-278
Skeletal muscle nebulin is thought to determine thin filament length and regulate actomyosin interaction in a calcium/calmodulin or S100 sensitive manner. We have investigated the binding of nebulin SH3 with proline-rich peptides derived from the 28-mer PEVK modules of titin and the Z-line protein myopalladin, using fluorescence, circular dichroism and nuclear magnetic resonance techniques. Of the six peptides studied, PR2 of titin (VPEKKAPVAPPK) and myopalladin MyoP2 (646VKEPPPVLAKPK657) bind to nebulin SH3 with micromolar affinity (approximately 31 and 3.4 microM, respectively), whereas the other four peptides bind weakly (>100 microM). Sequence analysis of titins reveals numerous SH3 binding motifs that are highly enriched in the PEVK segments of titin isoforms. Our findings suggest that titin PEVK and myopalladin may play signaling roles in targeting and orientating nebulin to the Z-line during sarcomere assembly.  相似文献   

11.
Titin, the largest protein known to date, has been linked to sarcomere assembly and function through its elastic adaptor and signaling domains. Titin's M-line region contains a unique kinase domain that has been proposed to regulate sarcomere assembly via its substrate titin cap (T-cap). In this study, we use a titin M line-deficient mouse to show that the initial assembly of the sarcomere does not depend on titin's M-line region or the phosphorylation of T-cap by the titin kinase. Rather, titin's M-line region is required to form a continuous titin filament and to provide mechanical stability of the embryonic sarcomere. Even without titin integrating into the M band, sarcomeres show proper spacing and alignment of Z discs and M bands but fail to grow laterally and ultimately disassemble. The comparison of disassembly in the developing and mature knockout sarcomere suggests diverse functions for titin's M line in embryonic development and the adult heart that not only involve the differential expression of titin isoforms but also of titin-binding proteins.  相似文献   

12.
Myofibrillar Z-disc streaming and loss of the desmin cytoskeleton are considered the morphological hallmarks of eccentric contraction-induced injury. The latter is contradicted by recent studies where a focal increase of desmin was observed in biopsies taken from human muscles with DOMS. In order to determine the effects of eccentric contraction-induced alterations of the myofibrillar Z-disc, we examined the distribution of alpha-actinin, the Z-disc portion of titin and the nebulin NB2 region in relation to actin and desmin in DOMS biopsies. In biopsies taken 2-3 days and 7-8 days after exercise, we observed a significantly higher number of fibres showing focal areas lacking staining for alpha-actinin, titin and nebulin than in biopsies taken from control or 1 h after exercise. None of these proteins were part of Z-disc streamings but instead they were found in distinct patterns in areas characterised by altered staining for desmin and actin. These were preferentially seen in regions with increased numbers of sarcomeres in parallel myofibrils. We propose that these staining patterns represent different stages of sarcomere formation. These findings therefore support our previous suggestion that muscle fibres subjected to eccentric contractions adapt to unaccustomed activity by the addition of new sarcomeres.  相似文献   

13.
Nwe TM  Shimada Y 《Tissue & cell》2000,32(3):223-227
In order to examine the role of cytoskeletal scaffolding proteins, nebulin and connectin (titin), in actin dynamics during myofibrillogenesis, rhodamine (rh)-labeled actin was microinjected into cultured skeletal muscle cells in which the function of these proteins had been inhibited with their respective antibodies. In the nebulin function-inhibited cells, exogenously introduced actin formed irregularly distributed amorphous patches or bright foci inside the cells, but it was not incorporated into myofibrillar structures at any stage. Thus, the blockage of actin binding sites of nebulin seems to inhibit the association of actin monomers to the preexisting nebulin scaffold. In the cells inhibited with anti-connectin antibody, incorporation of rh-actin was similar to that in antibody-uninjected cells. These results support the idea that nebulin is related to the accessibility/exchangeability of actin into nascent myofibrils, but connectin does not have such a role in actin assembly. Since all antibodies recognizing different domains of nebulin filaments blocked actin incorporation along the entire length of actin filaments, inhibition of any domains of nebulin filaments seems to affect actin dynamics.  相似文献   

14.
The extraocular muscles (EOMs), which are responsible for reflexive and voluntary eye movements, have many unique biochemical, physiological, and ultrastructural features that set them apart from other skeletal muscles. For example, rodent EOMs lack M-lines and express EOM-specific myosin heavy chain (MYH13) and α-cardiac myosin heavy chain. Recent gene-expression profiling studies indicate the presence of other cardiac-specific proteins in adult EOMs. This interesting mixture of myofibrillar and cytoskeletal proteins poses the questions as to whether nebulette, as opposed to nebulin, might be expressed in EOM, and what isoforms of titin are expressed in the EOM. We have performed gel electrophoresis and immunological analyses to determine the titin and nebulin isoforms expressed in the EOM. We have found that the mass of the titin isoforms expressed in the EOM most closely resemble those found in the skeletal muscles tested, viz., the soleus and extensor digitorum longus (EDL). We also demonstrate that, although the EOM expresses cardiac isoforms of myosin, it does not express nebulette and contains a nebulin isoform with a mass consistent with that found in the prototypical fast hindlimb muscle EDL. This work was supported by grants from NIH-NHLB HL073089 to C.L.M. and NEI/NIH EY12998 to F.H.A.  相似文献   

15.
The influence of phosphorylation on the binding of microtubule-associated protein 2 (MAP2) to cellular microtubules was studied by microinjecting MAP2 in various phosphorylation states into rat-1 fibroblasts, which lack endogenous MAP2. Conventionally prepared brain MAP2, containing 10 mol of endogenous phosphate per mol (MAP2-P10), was completely bound to cellular microtubules within 2-3 min after injection. MAP2 prepared in the presence of phosphatase inhibitors, containing 25 mol/mol of phosphate (MAP2-P25), also bound completely. However, MAP2 whose phosphate content had been reduced to 2 mol phosphate per mol by treatment with alkaline phosphatase in vitro (MAP2-P2) did not initially bind to microtubules, suggesting that phosphorylation of certain sites in MAP2 is essential for binding to microtubules. MAP2-P10 was further phosphorylated in vitro via an endogenously bound protein kinase activity, adding 12 more phosphates, giving a total of 22 mol/mol. This preparation (MAP2-P10+12) also did not bind to microtubules. Assay of the binding of these preparations to taxol-stabilized tubulin polymers in vitro confirmed that their binding to tubulin depended on the state of phosphorylation, but the results obtained in microinjection experiments differed in some cases from in vitro binding. The results suggest that the site of phosphate incorporation rather than the amount is the critical factor in determining microtubule binding activity of MAP2. Furthermore, the interaction of MAP2 with cellular microtubules may be influenced by additional factors that are not evident in vitro.  相似文献   

16.
Glycogen synthase was isolated from extracts of mouse diaphragm muscle by immunoprecipitation with specific antibodies raised against the rabbit muscle enzyme. A procedure was developed which permitted phosphorylation of the immunoprecipitated enzyme by several purified protein kinases. Peptide mapping techniques (including reverse-phase HPLC and thin-layer electrophoresis and chromatography) were used to compare tryptic phosphopeptides of the rabbit and mouse muscle enzymes. The results demonstrated a high degree of similarity in the chemical properties of these peptides, suggesting significant homology around the phosphorylation sites in these proteins. Thus, mouse peptides corresponding to the rabbit muscle peptides containing sites 1a, 1b, 2, 3, and 5 were identified, with protein kinase recognition specificities identical to those of the rabbit enzyme. The study indicates significant conservation in the muscle isozymes of glycogen synthase between mouse and rabbit as well as a similar distribution of phosphorylation sites throughout the enzyme subunit.  相似文献   

17.
A casein kinase was highly purified from rabbit skeletal muscle whose substrate specificity and enzymatic properties were virtually identical to those of casein kinase-I from rabbit reticulocytes. Prolonged incubation of glycogen synthase with high concentrations of skeletal muscle casein kinase-I and Mg-ATP resulted in the incorporation of greater than 6 mol phosphate/mol subunit and decreased the activity ratio (+/- glucose-6P) from 0.8 to less than 0.02. The sites phosphorylated by casein kinase-I were all located in the N and C-terminal cyanogen bromide peptides, termed CB-1 and CB-2. At an incorporation of 6 mol phosphate/mol subunit, approximately equal to 2 mol/mol was present in CB-1 and approximately equal to 4 mol/mol in CB-2. Within CB-1, casein kinase-I phosphorylated the serines that were 3, 7 and 10 residues from the N-terminus of glycogen synthase, with minor phosphorylation at threonine-5. Within CB-2, approximately equal to 90% of the phosphate incorporated was located between residues 28 and 53, and at least five of the seven serine residues in this region were phosphorylated. The remaining 10% of phosphate incorporated into CB-2 was located between residues 98 and 123, mainly at a serine residue(s). Two of the major sites labelled by casein kinase-I (serine-3 and serine-10 of CB-1) are not phosphorylated by any other protein kinase. This will enable the role of casein kinase-I as a glycogen synthase kinase in vivo to be evaluated.  相似文献   

18.
In striated muscle sarcomeres, the contractile actin and myosin filaments are organised by a subset of specialised cytoskeletal proteins, the sarcomeric cytoskeleton. They include α-actinin, myomesin, and the giant proteins titin, obscurin and nebulin, which combine architectural, mechanical and signalling functions. Mechanics and signalling in the sarcomere appear tightly interdependent, but the exact contributions of the various sarcomeric cytoskeleton proteins to strain handling or signalling are only just emerging. General mechanisms of cytoskeletal mechanics and signalling may be gleaned from the sarcomere as a specialised actomyosin system. Recent work has led to insight into the interactions, structure, and mechanical stability of sarcomeric protein complexes that fulfil both structural and signalling roles.  相似文献   

19.
Cultured embryonic chicken skeletal muscle cells microinjected with rhodamine (rh)-labeled actin were stained with antibodies against nebulin and connectin (titin). In premyofibril areas, nebulin was observed as dotted structures, many of which were arranged in a linear fashion. These structures were associated with injected rh-actin. Among these linearly arranged dots of nebulin and rh-actin, numerous small nebulin dots without rh-actin incorporation were scattered. It is probable that the dots of nebulin and/or its associated protein(s) represent a preformed scaffold upon which actin monomers accumulate; exogenously introduced actin associates initially with small nebulin dots, which in turn coalesce to form rh-actin dots and are arranged linearly. In developing myofibrils, two patterns of nebulin distribution were found: "singlets" and "doublets." Recovery of rh-actin's fluorescence after photobleaching was slowest in the nonstriated dotted portions, followed by the striated myofibrillar portions with nebulin singlets and those with doublets, in that order. Thus, the distribution patterns of nebulin seem to be related to the accessibility/exchangeability of actin into nascent myofibrils. It is possible that early nebulin filaments exhibiting singlets are not tightly associated with actin filaments and that this loose association allows myofibrils to exchange nonadult isoforms of actin and other proteins into adult types. Connectin formed a striated pattern before the formation of rh-actin/nebulin striations. It appears that connectin does not have any significant role in the accessibility of actin into nascent myofibrils.  相似文献   

20.
mAbs specific for titin or nebulin were characterized by immunoblotting and fluorescence microscopy. Immunoelectron microscopy on relaxed chicken breast muscle revealed unique transverse striping patterns. Each of the 10 distinct titin antibodies provided a pair of delicate decoration lines per sarcomere. The position of these pairs was centrally symmetric to the M line and was antibody dependent. The results provided a linear epitope map, which starts at the Z line (antibody T20), covers five distinct positions along the I band (T21, T12, T4, T1, T11), the A-I junction (T3), and three distinct positions within the A band (T10, T22, T23). The epitope of T23 locates 0.2 micron before the M line. In immunoblots, the two antibodies decorating at or just before the Z line (T20, T21) specifically recognized the insoluble titin TI component but did not recognize TII, a proteolytic derivative. All other titin antibodies recognized TI and TII. Thus titin molecules appear as polar structures lacking over large regions repetitive epitopes. One physical end seems related to Z line anchorage, while the other may bind close to the M line. Titin epitopes influenced by the contractional state of the sarcomere locate between the N1 line and the A-I junction (T4, T1, T11). We discuss the results in relation to titin molecules having half-sarcomere lengths. The three nebulin antibodies so far characterized again give rise to distinct pairs of stripes. These locate close to the N2 line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号