首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PTHrP is necessary for the formation of the embryonic mammary gland and, in its absence, the embryonic mammary bud fails to form the neonatal duct system. In addition, PTHrP is produced by the breast during lactation and contributes to the regulation of maternal calcium homeostasis during milk production. In this study, we examined the role of PTHrP during post-natal mammary development. Using a PTHrP-lacZ transgenic mouse, we surveyed the expression of PTHrP in the developing post-natal mouse mammary gland. We found that PTHrP expression is restricted to the basal cells of the gland during pubertal development and becomes expressed in milk secreting alveolar cells during pregnancy and lactation. Based on the previous findings that overexpression of PTHrP in cap and myoepithelial cells inhibited ductal elongation during puberty, we predicted that ablation of native PTHrP expression in the post-natal gland would result in accelerated ductal development. To address this hypothesis, we generated two conditional models of PTHrP-deficiency specifically targeted to the postnatal mammary gland. We used the MMTV-Cre transgene to ablate the floxed PTHrP gene in both luminal and myoepithelial cells and a tetracycline-regulated K14-tTA;tetO-Cre transgene to target PTHrP expression in just myoepithelial and cap cells. In both models of PTHrP ablation, we found that mammary development proceeds normally despite the absence of PTHrP. We conclude that PTHrP signaling is not required for normal ductal or alveolar development.  相似文献   

2.
A conditional null mutation of peroxisome proliferator-activated receptor-binding protein (PBP) gene was generated to understand its role in mammary gland development. PBP-deficient mammary glands exhibited retarded ductal elongation during puberty, and decreased alveolar density during pregnancy and lactation. PBP-deficient mammary glands could not produce milk to nurse pups during lactation. Both the mammary ductal elongation in response to estrogen treatment and the mammary lobuloalveolar proliferation stimulated by estrogen plus progesterone were attenuated in PBP-deficient mammary glands. The proliferation index was decreased in PBP-deficient mammary glands. PBP-deficient mammary epithelial cells expressed abundant beta-casein, whey acidic protein, and WDNM1 mRNA, indicating a relatively intact differentiated function. PBP-deficient epithelial cells were unable to form mammospheres, which were considered to be derived from mammary progenitor/stem cells. We conclude that PBP plays a pivotal role in the normal mammary gland development.  相似文献   

3.
The stromal microenvironment regulates mammary gland branching morphogenesis. We have observed that mast cells are present in the mammary gland throughout its postnatal development and, in particular, are found around the terminal end buds and ductal epithelium of the pubertal gland. Mast cells contribute to allergy, inflammatory diseases, and cancer development but have not been implicated in normal development. Genetic and pharmacological disruption of mast cell function in the mammary gland revealed that mast cells are involved in rapid proliferation and normal duct branching during puberty, and this effect is independent of macrophage recruitment, which also regulates mammary gland development. For mast cells to exert their effects on normal morphogenesis required activation of their serine proteases and degranulation. Our observations reveal a novel role for mast cells during normal pubertal development in the mammary gland.  相似文献   

4.
5.
In vertebrates, the hedgehog family of cell signaling proteins and associated downstream network components play an essential role in mediating tissue interactions during development and organogenesis. Loss-of-function or misexpression mutation of hedgehog network components can cause birth defects, skin cancer and other tumors. The mammary gland is a specialized skin derivative requiring epithelial-epithelial and epithelial-stromal tissue interactions similar to those required for development of other organs, where these interactions are often controlled by hedgehog signaling. We have investigated the role of the Patched-1 (Ptc1) hedgehog receptor gene in mammary development and neoplasia. Haploinsufficiency at the Ptc1 locus results in severe histological defects in ductal structure, and minor morphological changes in terminal end buds in heterozygous postpubescent virgin animals. Defects are mainly ductal hyperplasias and dysplasias characterized by multilayered ductal walls and dissociated cells impacting ductal lumens. This phenotype is 100% penetrant. Remarkably, defects are reverted during late pregnancy and lactation but return upon involution and gland remodeling. Whole mammary gland transplants into athymic mice demonstrates that the observed dysplasias reflect an intrisic developmental defect within the gland. However, Ptc1-induced epithelial dysplasias are not stable upon transplantation into a wild-type epithelium-free fat pad, suggesting stromal (or epithelial and stromal) function of Ptc1. Mammary expression of Ptc1 mRNA is both epithelial and stromal and is developmentally regulated. Phenotypic reversion correlates with developmentally regulated and enhanced expression of Indian hedgehog (Ihh) during pregnancy and lactation. Data demonstrate a critical mammary role for at least one component of the hedgehog signaling network and suggest that Ihh is the primary hedgehog gene active in the gland.  相似文献   

6.
7.
8.
Both ovarian and pituitary hormones are required for the pubertal development of the mouse mammary gland. Estradiol directs ductal elongation and branching, while progesterone leads to tertiary branching and alveolar development. The purpose of this investigation was to identify estrogen‐responsive genes associated with pubertal ductal growth in the mouse mammary gland in the absence of other ovarian hormones and at different stages of development. We hypothesized that the estrogen‐induced genes and their associated functions at early stages of ductal elongation would be distinct from those induced after significant ductal elongation had occurred. Therefore, ovariectomized prepubertal mice were exposed to 17β‐estradiol from two to 28 days, and mammary gland global gene expression analyzed by microarray analysis at various times during this period. We found that: (a) gene expression changes in our estrogen‐only model mimic those changes that occur in normal pubertal development in intact mice, (b) both distinct and overlapping gene profiles were observed at varying extents of ductal elongation, and (c) cell proliferation, the immune response, and metabolism/catabolism were the most common functional categories associated with mammary ductal growth. Particularly striking was the novel observation that genes active during carbohydrate metabolism were rapidly and robustly decreased in response to estradiol. Lastly, we identified mammary estradiol‐responsive genes that are also co‐expressed with estrogen receptor α in human breast cancer. In conclusion, our genomic data support the physiological observation that estradiol is one of the primary hormonal signals driving ductal elongation during pubertal mammary development. Mol. Reprod. Dev. 76: 733–750, 2009. Published 2009 Wiley‐Liss, Inc.  相似文献   

9.
p190-B Rho GTPase activating protein is essential for mammary gland development because p190-B deficiency prevents ductal morphogenesis. To investigate the role of p190-B during distinct stages of mammary gland development, tetracycline-regulatable p190-B-overexpressing mice were generated. Short-term induction of p190-B in the developing mammary gland results in abnormal terminal end buds (TEBs) that exhibit aberrant budding off the neck, histological anomalies, and a markedly thickened stroma. Overexpression of p190-B throughout postnatal development results in increased branching, delayed ductal elongation, and disorganization of the ductal tree. Interestingly, overexpression of p190-B during pregnancy results in hyperplastic lesions. Several cellular and molecular alterations detected within the aberrant TEBs may contribute to these phenotypes. Signaling through the IGF pathway is altered, and the myoepithelial cell layer is discontinuous at sites of aberrant budding. An increase in collagen and extensive infiltration of macrophages, which have recently been implicated in branching morphogenesis, is observed in the stroma surrounding the p190-B-overexpressing TEBs. We propose that the stromal response, disruption of the myoepithelial layer, and alterations in IGF signaling in the p190-B-overexpressing mice impact the TEB architecture, leading to disorganization and increased branching of the ductal tree. Moreover, we suggest that alterations in tissue architecture and the adjacent stroma as a consequence of p190-B overexpression during pregnancy leads to loss of growth control and the formation of hyperplasia. These data demonstrate that precise control of p190-B Rho GTPase-activating protein activity is critical for normal branching morphogenesis during mammary gland development.  相似文献   

10.
Matrix metalloproteinases and their expression in mammary gland   总被引:5,自引:1,他引:4  
The matrix metalloproteinases (MMPs) are a family of zine-dependent endopeptidases that play a key role in both normal and pathological processes involving tissue remodeling events.The expression of these proteolytic enzymes is highly regulated by a balance between extracellular matrix (ECM) deposition and its degradation,and is controlled by growth factors,cytokines,hormones,as well as interactions with the ECM macromolecules.Furthermore,the activity of the MMPs is regulated by their natural endogenous inhibitors,which are members of the tissue inhibitor of metalloproteinases (TIMP) family.In the normal mammary gland,MMPs are expressed during ductal development,lobulo-alveolar development in pregnancy and involution after lactation.Under pathological conditions,such as tumorigenesis,the dysregulated expression of MMPs play a role in tumor initiation,progression and malignant conversion as well as facilitating invasion and metastasis of malignant cells through degradation of the ECM and basement membranes.  相似文献   

11.
A regulated pattern of nuclear factor kappaB (NF-kappaB) activation is essential for normal development of the mammary gland. An increase in NF-kappaB activity has been implicated in breast cancer. We have generated a novel transgenic mouse model to investigate the role of the alternative NF-kappaB pathway in ductal development and identify possible mediators of tumorigenesis downstream of p100/p52. By overexpressing the NF-kappaB p100/p52 subunit in mammary epithelium using the beta-lactoglobulin milk protein promoter, we found that transgene expression resulted in increased overall NF-kappaB activity during late pregnancy. During pregnancy, p100/p52 expression resulted in delayed ductal development with impaired secondary branching and increased levels of Cyclin D1, matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and cyclo-oxygenase-2 (COX-2) in the mammary gland. After multiple pregnancies the p100 transgenics exhibited a ductal thickening accompanied by small hyperplastic foci. In tumors from mice expressing the polyoma middle T oncoprotein (PyVT) in the mammary gland, increased levels of p100/p52 were present at the time of tumor development. These results show that increased p100/p52 disrupts normal ductal development and provides insight into the mechanism by which this may contribute to human breast cancer.  相似文献   

12.
We have examined the role of integrin-extracellular matrix interactions in the morphogenesis of ductal structures in vivo using the developing mouse mammary gland as a model. At puberty, ductal growth from terminal end buds results in an arborescent network that eventually fills the gland, whereupon the buds shrink in size and become mitotically inactive. End buds are surrounded by a basement membrane, which we show contains laminin-1 and collagen IV. To address the role of cell-matrix interactions in gland development, pellets containing function-perturbing anti-beta1 integrin, anti-alpha6 integrin, and anti-laminin antibodies respectively were implanted into mammary glands at puberty. Blocking beta1 integrins dramatically reduced both the number of end buds per gland and the extent of the mammary ductal network, compared with controls. These effects were specific to the end buds since the rest of the gland architecture remained intact. Reduced development was still apparent after 6 days, but end buds subsequently reappeared, indicating that the inhibition of beta1 integrins was reversible. Similar results were obtained with anti-laminin antibodies. In contrast, no effect on morphogenesis in vivo was seen with anti-alpha6 integrin antibody, suggesting that alpha6 is not the important partner for beta1 in this system. The studies with beta1 integrin were confirmed in a culture model of ductal morphogenesis, where we show that hepatocyte growth factor (HGF)-induced tubulogenesis is dependent on functional beta1 integrins. Thus integrins and HGF cooperate to regulate ductal morphogenesis. We propose that both laminin and beta1 integrins are required to permit cellular traction through the stromal matrix and are therefore essential for maintaining end bud structure and function in normal pubertal mammary gland development.  相似文献   

13.
The mammary gland is a dynamic organ that undergoes cyclic developmental and regressive changes during the lifetime of a female mammal. Mammogenesis begins during embryonic life with the development of the first mammary gland rudiments and ductal system. After birth, during the pre-pubertal period, the ductal growth of the mammary parenchyma occurs through the fat pad. In most of the ruminant species allometric mammary parenchyma development begins with the onset of cyclic ovarian secretions activity. The two main hormones secreted during an ovarian cycle are estradiol and progesterone. These steroid hormones are derived from cholesterol and are synthesized by theca and granulosa cells in ovaries. During puberty, the mammary parenchyma develops in a compact, highly arborescent parenchymal mass surrounded by a dense connective matrix. Ductal elongation and lobulo-alveolar development are accomplished during growth and pregnancy to prepare for future milk production. At the end of lactation, the mammary gland undergoes involution, which corresponds to a regression of the secretory tissue, a reduction in the alveolar size and a loss of mammary epithelial cells (MECs). Ovarian steroids (estradiol and progesterone) appear to be key regulators of the different stages of mammogenesis and mammary function. Through this review, the role and the importance of ovarian steroids on mammary gland and on MECs is described.  相似文献   

14.
Reelin signaling is required for appropriate cell migration and ductal patterning during mammary gland morphogenesis. Dab1, an intracellular adaptor protein activated in response to reelin signaling, is expressed in the developing mammary bud and in luminal epithelial cells in the adult gland. Reelin protein is expressed in a complementary pattern, first in the epithelium overlying the mammary bud during embryogenesis and then in the myoepithelium and periductal stroma in the adult. Deletion in mouse of either reelin or Dab1 induced alterations in the development of the ductal network, including significant retardation in ductal elongation, decreased terminal branching, and thickening and disorganization of the luminal wall. At later stages, some mutant glands overcame these early delays, but went on to exhibit enlarged and chaotic ductal morphologies and decreased terminal branching: these phenotypes are suggestive of a role for reelin in spatial patterning or structural organization of the mammary epithelium. Isolated mammary epithelial cells exhibited decreased migration in response to exogenous reelin in vitro, a response that required Dab1. These observations highlight a role for reelin signaling in the directed migration of mammary epithelial cells driving ductal elongation into the mammary fat pad and provide the first evidence that reelin signaling may be crucial for regulating the migration and organization of non-neural tissues.  相似文献   

15.
We have examined the role of two mesenchymal ligands of epithelial tyrosine kinase receptors in mouse mammary gland morphogenesis. In organ cultures of mammary glands, hepatocyte growth factor (HGF, scatter factor) promoted branching of the ductal trees but inhibited the production of secretory proteins. Neuregulin (NRG, neu differentiation factor) stimulated lobulo-alveolar budding and the production of milk proteins. These functional effects are paralleled by the expression of the two factors in vivo: HGF is produced in mesenchymal cells during ductal branching in the virgin animal; NRG is expressed in the mesenchyme during lobulo-alveolar development at pregnancy. The receptors of HGF and NRG (c-met, c-erbB3, and c-erbB4), which are expressed in the epithelial cells, are not regulated. In organ culture, branching morphogenesis and lobulo-alveolar differentiation of the mammary gland could be abolished by blocking expression of endogenous HGF and NRG by the respective antisense oligonucleotides; in antisense oligonucleotide-treated glands, morphogenesis could again be induced by the addition of recombinant HGF and NRG. We thus show that two major postnatal morphogenic periods of mammary gland development are dependent on sequential mesenchymal- epithelial interactions mediated by HGF and NRG.  相似文献   

16.
To investigate the role of nuclear receptor coactivator peroxisome proliferator-activated receptor-interacting protein (PRIP) in mammary gland development, we generated a conditional null mutation of PRIP in mammary glands. In PRIP-deficient mammary glands, the elongation of ducts during puberty was not affected, but the numbers of ductal branches were decreased, a condition that persisted long after puberty, indicating that the potential of ductal branching was impaired. During pregnancy, PRIP-deficient mammary glands exhibited decreased alveolar density. The lactating PRIP-deficient glands contained scant lobuloalveoli with many adipocytes, whereas the wild type glands were composed of virtually no adipocytes but mostly lobuloalveoli. As a result, PRIP mammary-deficient glands could not produce enough milk to nurse all the pups during lactation. The ductal branching of mammary glands in response to estrogen treatment was attenuated in PRIP mutant glands. Whereas the proliferation index was similar between wild type and PRIP-deficient glands, increased apoptosis was observed in PRIP-deficient glands. PRIP-deficient glands expressed increased amphiregulin, transforming growth factor-alpha, and betacellulin mRNA as compared with wild type glands. The differentiated function of PRIP-deficient mammary epithelial cells was largely intact, as evidenced by the expression of abundant beta-casein, whey acidic protein (WAP), and WDNM1 mRNA. We conclude that PRIP is important for normal mammary gland development.  相似文献   

17.
Transforming growth factor-beta (TGF-beta) is thought to regulate ductal and lobuloalveolar development as well as involution in the mammary gland. In an attempt to understand the role TGF-beta plays during normal mammary gland development, and ultimately cancer, we previously generated transgenic mice that express a dominant-negative TGF-beta type II receptor under control of the metallothionine promoter (MT-DNIIR). Upon stimulation with zinc sulfate, the transgene was expressed in the mammary stroma and resulted in an increase in ductal side branching. In this study, mammary gland transplantation experiments confirm that the increase in side branching observed was due to DNIIR activity in the stroma. Development during puberty through the end buds was also accelerated. Cbl is a multifunctional intracellular adaptor protein that regulates receptor tyrosine kinase ubiquitination and downregulation. Mice with a targeted disruption of the c-Cbl gene displayed increased side branching similar to that observed in MT-DNIIR mice; however, end bud development during puberty was normal. Transplantation experiments showed that the mammary stroma was responsible for the increased side branching observed in Cbl-null mice. Cbl expression was reduced in mammary glands from DNIIR mice compared to controls and TGF-beta stimulated expression of Cbl in cultures of primary mammary fibroblasts. In addition, both TGF-beta and Cbl regulated platelet-derived growth factor receptor-alpha (PDGFR alpha) expression in vivo and in isolated mammary fibroblasts. The hypothesis that TGF-beta mediates the levels of PDGFR alpha protein via regulation of c-Cbl was tested. We conclude that TGF-beta regulates PDGFR alpha in the mammary stroma via a c-Cbl-independent mechanism. Finally, the effects of PDGF-AA on branching were determined. Treatment in vivo with PDGF-AA did not affect branching making a functional interaction between TGF-beta and PDGF unlikely.  相似文献   

18.
Despite the fact that physiological evidence points to the existence of a functional Na-K-Cl cotransporter in the mammary gland, the molecular identity of this transport process remains unknown. We now show that the Na-K-Cl cotransporter isoform, NKCC1, is expressed in mammary tissue. Developmental profiling revealed that the level of NKCC1 protein was significantly influenced by the stage of mammary gland development, and immunolocalization studies demonstrated that NKCC1 was present on the basolateral membrane of mammary epithelial cells. To examine whether functional NKCC1 is required for mammary epithelial cell development, we used NKCC1 -/- mice. We demonstrate that NKCC1 -/- mammary epithelium exhibited a significant delay in ductal outgrowth and an increase in branching morphogenesis during virgin development. These effects were autonomous to the epithelium as assessed by mammary gland transplantation. Although the absence of NKCC1 had no apparent effect on gross mammary epithelial cell morphology during lactation, pups born to NKCC1 -/- mice failed to thrive. Finally, analysis of NKCC1 protein in mouse models that exhibit defects in mammary gland development demonstrate that high levels of NKCC1 protein are indicative of ductal epithelial cells, and the presence of NKCC1 protein is characteristic of mammary epithelial cell identity.  相似文献   

19.
Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development.  相似文献   

20.
Transforming growth factor-beta (TGF-beta) plays an essential role in growth and patterning of the mammary gland, and alterations in its signaling have been shown to illicit biphasic effects on tumor progression and metastasis. We demonstrate in mice that TGF-beta (Tgfbeta) regulates the expression of a non-canonical signaling member of the wingless-related protein family, Wnt5a. Loss of Wnt5a expression has been associated with poor prognosis in breast cancer patients; however, data are lacking with regard to a functional role for Wnt5a in mammary gland development. We show that Wnt5a is capable of inhibiting ductal extension and lateral branching in the mammary gland. Furthermore, Wnt5a(-/-) mammary tissue exhibits an accelerated developmental capacity compared with wild-type tissue, marked by larger terminal end buds, rapid ductal elongation, increased lateral branching and increased proliferation. Additionally, dominant-negative interference of TGF-beta signaling impacts not only the expression of Wnt5a, but also the phosphorylation of discoidin domain receptor 1 (Ddr1), a receptor for collagen and downstream target of Wnt5a implicated in cell adhesion/migration. Lastly, we show that Wnt5a is required for TGF-beta-mediated inhibition of ductal extension in vivo and branching in culture. This study is the first to show a requirement for Wnt5a in normal mammary development and its functional connection to TGF-beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号