首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Sublethal responses to insecticides are frequently neglected in studies of insecticide resistance, although stimulatory effects associated with low doses of compounds toxic at higher doses, such as insecticides, have been recognized as a general toxicological phenomenon. Evidence for this biphasic dose–response relationship, or hormesis, was recognized as one of the potential causes underlying pest resurgence and secondary pest outbreaks. Hormesis has also potentially important implications for managing insecticide‐resistant populations of insect‐pest species, but evidence of its occurrence in such context is lacking and fitness parameters are seldom considered in these studies. Here, we reported the stimulatory effect of sublethal doses of the pyrethroid insecticide deltamethrin sprayed on maize grains infested with a pyrethroid‐resistant strain of the maize weevil (Sitophilus zeamais) (Coleoptera: Curculionidae). The parameters estimated from the fertility tables of resistant insects exposed to deltamethrin indicated a peak in the net reproductive rate at 0.05 ppm consequently leading to a peak in the intrinsic rate of population growth at this dose. The phenomenon is consistent with insecticide‐induced hormesis and its potential management implications are discussed.  相似文献   

2.
The Swede midge, Contarinia nasturtii Kieffer (Diptera: Cecidomyiidae), a common insect pest in Europe, is a newly invasive pest in North America that constitutes a major threat to crucifer vegetable and field crops. Chemical control of Swede midge with synthetic insecticides under laboratory conditions indicated that insecticides generally could provide very effective control; however, insecticide treatments in the field were rarely able to maintain damage levels within marketable limits. In the current study, factors affecting insecticide efficacy were investigated using a neonicotinoid insecticide, acetamipird, as a foliar spray on cauliflower plants. Our results indicated that Swede midge density did not affect the efficacy of acetamirpid, although it significantly increased the subsequent Swede midge population on the unsprayed cauliflower plants. Additionally, cauliflower plant age did not significantly affect spray coverage and acetamipird efficacy on Swede midge. However, acetamiprid only provided 6-d control of Swede midge and its efficacy was reduced by up to 50% 9 d after spraying. Implications of our results on the development of an overall integrated pest management (IPM) program for Swede midge also are discussed.  相似文献   

3.

Background

Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds.

Methodology/Principal Findings

We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control.

Conclusions/Significance

Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will provide researchers with information to design more robust experiments and will inform the decisions of diverse stakeholders regarding the safety of transgenic insecticidal crops.  相似文献   

4.
Ecological engineering using vegetable or flower strips is promoted as a potential pest management strategy in irrigated rice. Farmers in the Philippines often plant rice levees (bunds) with vegetables, particularly string beans (Vigna unguiculata [L.] Walpers) to supplement income, but without considering the potential for pest management. This study examines the effects of planted bunds on rice herbivores and their natural enemies. We compared arthropods in (a) rice fields that had string beans planted on bunds, (b) fields without string beans and without any insecticide applications and (c) fields without string beans but with insecticide treatments (standard practice). Rice yield was similar across all treatments; however, the vegetation strips produced an extra 3.6 kg of fresh string bean pods per metre of bund. There were no apparent increases in major natural enemy groups in fields with string beans compared to fields with conventional bunds. Fields with insecticide treatments had higher damage from leaffolders (Lepidoptera: Pyralidae). The sprayed fields also had lower parasitism of planthopper eggs and fewer predatory dragonflies and damselflies (Odonata). Furthermore, the mortality of planthopper (Delphacidae: Hemiptera) and stemborer (Pyralidae) eggs by parasitoids and predators was density dependent only in the unsprayed fields (with and without string beans). Our results demonstrate that planting string beans on rice bunds improves the productivity of rice farms, but our ecological engineering system did not appreciably affect natural enemy or herbivore abundance; however, chemical insecticides adversely affected pest regulatory ecosystem functions leading to higher pest damage.  相似文献   

5.
A perimeter trap crop barrier of hot cherry peppers, border-row insecticide applications, and a combination of the two management strategies were evaluated to see if they could protect a centrally located main crop of bell peppers from oviposition and infestation by the pepper maggot, Zonosemata electa (Say). In large plots, the main cash crop of bell peppers was protected from the majority of the oviposition and infestation by all three barriers. The combination sprayed/trap crop barrier provided the best protection against both oviposition and infestation and resulted in over 98% pest-free fruit at harvest. Maggots infested only 1.7% of the main crop fruit when protected by a sprayed or unsprayed trap crop barrier, compared with 15.4% in control plots. The perimeter sprayed/trap crop strategy was employed in three commercial fields in 2000 and 2001. The combination barrier resulted in superior insect control and reduced insecticide use at all commercial locations, compared with the same farms' past history or to farms using conventional and integrated pest management (IPM) methods. Economic analysis showed that the technique is more cost effective and profitable than relying on whole-field insecticide applications to control the pepper maggot. Farmer users were surveyed and found the perimeter trap crop technique simple to use, with many hard-to-measure benefits associated with worker protection issues, marketing, personnel/management relations, pest control and the environment. Use of the perimeter trap crop technique as part of an IPM or organic program can help improve crop quality and overall farm profitability, while reducing pesticide use and the possibility of secondary pest outbreaks.  相似文献   

6.
1. Wetland insect predators can structure aquatic prey communities via selective predation, but receive considerably less attention than vertebrate predators. We conducted laboratory experiments to test selective predation by two species of larval dytiscid beetles ( Agabus ; Coleoptera: Dytiscidae) and the potential contribution of these beetles to suppression of mosquito populations in constructed wetlands.
2.  Agabus consumed copepods, ostracods and mosquito larvae in no-choice tests. When offered a choice, 76% of all prey consumed were mosquito larvae, indicating selective predation. Subsequent experiments revealed this preference was due to ease of capture of mosquito larvae over alternative prey.
3. Cannibalism and intraguild predation were common within and between species of Agabus , which may reduce the overall impact of the observed selective predation.
4.  Agabus larvae selectively preyed on mosquito larvae over alternative prey, which is not characteristic of some fish used as biological control agents for mosquitoes. Predator exclusion or similar experiments in the field could document how these results translate into a natural setting.
5. The findings of this study suggest developing mosquito suppression strategies focused on conservation of native wetland predators. These strategies are preferable to introducing non-native generalist predators, or applying pesticides.  相似文献   

7.
Functional benefits of predator species diversity depend on prey identity   总被引:3,自引:0,他引:3  
Abstract.  1. Determining the functional significance of species diversity in natural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity.
2. This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia.
3. Glasshouse experiments were undertaken in which four life stages of a planthopper ( Nilaparvata lugens ) and a moth ( Marasmia patnalis ) were caged with single or three-species combinations of generalist predators.
4. Generally, predation rates of the three-species assemblages exceeded expectation when attacking M. patnalis , but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens .
5. The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional complementarity among predator species. This indicates that emergent species diversity effects in natural enemy assemblages are context dependent; they depend not only on the characteristics of the predators species, but on the identity of the species on which they prey.  相似文献   

8.
A 2-year commercial-scale study was conducted to qualitatively evaluate the effect of different insecticide treatment regimes on the predator complex attacking Bemisia tabaci (Gennadius) in cotton. In 1996 three insecticide regimes were compared: a rotation of conventional broad-spectrum insecticides or one of two different regimes based on the initial use of the insect growth regulators (IGRs), buprofezin and pyriproxyfen. In 1997 the same three regimes plus an untreated control were compared; split-plots were sprayed once for Lygus hesperus Knight control using a broad-spectrum insecticide. Relative feeding activity for each predator species was compared between treatment regimes by analyzing the gut contents of predators for the presence of whitefly remains using a whitefly-specific enzyme-linked immunosorbent assay (ELISA). The ELISA results were combined with predator density data to obtain a qualitative pesticide impact index for each predator group. In total, we analyzed the gut contents of 32 262 field-collected predators, representing nine different taxa. Of these, Pseudatomocelis seriatus (Reuter), Spanagonicus albofasciatus (Reuter), and spiders consisting primarily of Misumenops celer (Hentz) are shown to be whitefly predators for the first time. Predator populations were usually reduced in plots that received applications of broad-spectrum insecticides for B. tabaci and L. hesperus control, but there were few treatment differences in the proportions of predators containing whitefly remains in their guts. However, the feeding activity of certain predator species in fields sprayed with broad spectrum insecticides was significantly reduced compared with those in IGR-based and control treatments. Overall, insecticide regimes using IGRs were less lethal to the whitefly predator complex than regimes consisting of only conventional, broad-spectrum insecticides, but differences in predator feeding activity on whitefly between the various insecticide treatment regimes were minimal.  相似文献   

9.
Host-parasitoid spatial ecology: a plea for a landscape-level synthesis   总被引:5,自引:0,他引:5  
A growing body of literature points to a large-scale research approach as essential for understanding population and community ecology. Many of our advances regarding the spatial ecology of predators and prey can be attributed to research with insect parasitoids and their hosts. In this review, we focus on the progress that has been made in the study of the movement and population dynamics of hosts and their parasitoids in heterogeneous landscapes, and how this research approach may be beneficial to pest management programs. To date, few studies have quantified prey and predator rates and ranges of dispersal and population dynamics at the patch level--the minimum of information needed to characterize population structure. From host-parasitoid studies with sufficient data, it is clear that the spatial scale of dispersal can differ significantly between a prey and its predators, local prey extinctions can be attributed to predators and predator extinction risk at the patch level often exceeds that of the prey. It is also evident that populations can be organized as a single, highly connected (patchy) population or as semi-independent extinction-prone local populations that collectively form a persistent metapopulation. A prey and its predators can also differ in population structure. At the landscape level, agricultural studies indicate that predator effects on its prey often spill over between the crop and surrounding area (matrix) and can depend strongly on landscape structure (e.g. the proportion of suitable habitat) at scales extending well beyond the crop margins. In light of existing empirical data, predator-prey models are typically spatially unrealistic, lacking important details on boundary responses and movement behaviour within and among patches. The tools exist for conducting empirical and theoretical research at the landscape level and we hope that this review calls attention to fertile areas for future exploration.  相似文献   

10.
Climate change is one of the most important factors affecting the phenology, distribution, composition and diversity of organisms. In agricultural systems many pests and natural enemies are arthropods. As poikilotherm organisms, their body temperature is highly dependent on environmental conditions. Because higher trophic levels typically have lower tolerance to high temperatures than lower trophic levels, trends towards increasing local or regional temperatures may affect the strength of predator/prey interactions and disrupt pest control. Furthermore, increasing temperatures may create climate corridors that could facilitate the invasion and establishment of invasive species originating from warmer areas. In this study we examined the effect of environmental conditions on the dynamics of an agro-ecosystem community located in southern Spain, using field data on predator/prey dynamics and climate gathered during four consecutive years. The study system was composed of an ever-green tree species (avocado), an exotic tetranychid mite, and two native species of phytoseiid mites found in association with this new pest. We also present a climatological analysis of the temperature trend in the area of study during the last 28 years, as evidence of temperature warming occurring in the area. We found that the range of temperatures with positive per capita growth rates was much wider in prey than in predators, and that relative humidity contributed to explain the growth rate variation in predators, but not in prey. Predator and prey differences in thermal performance curves could explain why natural enemies did not respond numerically to the pest when environmental conditions were harsh.  相似文献   

11.
The insecticidal properties of the foliar fungicide pyrazophos were investigated in autumn- and spring-sown barley crops using several methods to estimate the density of non-target arthropods and by using manipulative experiments. In autumn-sown crops, pyrazophos significantly reduced densities of cereal aphid natural enemies relative to pre-treatment levels compared to areas of crop that were left unsprayed. These significant differences persisted in most groups for over 45 days after treatment. Groups most affected were aphid-specific predators, polyphagous predators, (Carabidae, Staphylinidae but not Araneae) and parasitoids. Insects known to be preferred food items of wild gamebird chicks and other non-target groups such as the Collembola were also significantly reduced in density on plots sprayed with pyrazophos, the effects again persisting for over 45 days. Densities of beneficial and non-target insects were also reduced in plots of spring barley sprayed with pyrazophos. However, the experimental design meant that levels of reductions were not significant for most arthropod groups. Removal of prey items (Drosophila pupae) placed in sprayed and unsprayed spring barley plots showed that the proportion predated was significantly lower on pyrazophos-treated plots compared to those remaining unsprayed, the difference persisting for at least 7 wk after treatment. Removal of cereal aphids from colonies introduced to sprayed and unsprayed plots was also significantly lower on plots treated with pyrazophos. Difficulties of data interpretation associated with experimental design are discussed together with the consequences of the use of broad-spectrum pesticides in I.P.M. programmes in cereals.  相似文献   

12.
A large-scale study was conducted in 1996 to evaluate and demonstrate strategies for pest management of Bemisia tabaci (Gennadius) in cotton involving different insecticide regimes, application methods, and action thresholds. Here we examined the effects of the various management systems on the abundance and activity of native natural enemies. Population densities of 18 out of 20 taxa of arthropod predators were significantly higher in regimes initiated with the insect growth regulators (IGRs) buprofezin (chitin inhibitor) or pyriproxyfen (juvenile hormone analog) compared with a regime dependent on a rotation of conventional, broad-spectrum insecticides. There were no differences in predator density between the two IGR regimes, and generally no effects due to application method or action threshold level. Predator to prey ratios were significantly higher in regimes utilizing the two IGRs compared with the conventional regime, but were unaffected by application method or threshold level. Rates of parasitism by Eretmocerus eremicus Rose and Zolnerowich and Encarsia meritoria Gahan were higher in the IGR regimes compared with the conventional regime, but were unaffected by insecticide application method, or the action threshold used to initiate applications of the IGRs. Results demonstrate the selective action of these two IGRs and suggest that their use may enhance opportunities for conservation biological control in cotton systems affected by B. tabaci, especially relative to conventional insecticide alternatives.  相似文献   

13.
The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines) encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.  相似文献   

14.
Abstract 1. Patch marks that allow the subsequent avoidance of marked areas may be used by small animals to increase foraging efficiency. This study is the first to demonstrate the presence of a patch-marking system in insect predators. Furthermore, the marking system is found only in females, and factors such as hunger state and patch quality play a key role in determining whether a female will re-investigate a self-marked patch.
2. Females of the insect predator Orius sauteri avoided areas where the female itself had searched previously but did not avoid areas searched by conspecific females when deprived of prey for 24 h . There was no evidence that males use such a patch-marking system, indicating the presence of a sex difference in patch-mark use.
3. Females did not discriminate between patches visited previously and patches not visited when they were either well fed or when patches contained abundant prey.
4. The patch mark used by females was effective for ≤ 1 h and may be a reliable indicator of a recently visited area in which prey have been depleted.
5. These results suggest that O. sauteri females have the flexibility to adjust their behavioural responses to a previously searched area depending on their hunger state and the availability of prey in their foraging environment.  相似文献   

15.
The ecological effects of introduced species on native organisms can sometimes, but not always be significant. The risks associated with invasive alien pests are difficult to quantify. This paper concentrates on the ecological effects of invasive insect predators that feed on pest insects, because the former may potentially affect the biological control of the latter. The literature indicates that invasive predatory insects generally are resistant to changes in environmental conditions, long-lived and voracious with a high reproductive rate, high dispersal ability, able to spread very rapidly across landscapes and exhibit phenotypic plasticity. Their colonization of patches of prey may induce native predators to leave, but the evidence that invaders negatively affect the abundance of the native species is scarce and not persuasive. Insect predators do not substantially affect the abundance of their prey, if the ratio of generation time of the predator to that of the prey is large (the generation time ratio hypothesis), therefore the effect of an invasion by long-lived alien predators on systems consisting of long-lived native predators and short-lived prey on the abundance of the prey is hard to detect.  相似文献   

16.
Sweet corn, Zea mays L., is attacked by a variety of insect pests that can cause severe losses to the producer. Current control practices are largely limited to the application of broad-spectrum insecticides that can have a substantial and deleterious impact on the natural enemy complex. Predators have been shown to provide partial control of sweet corn pests when not killed by broad-spectrum insecticides. New products that specifically target the pest species, while being relatively benign to other insects, could provide more integrated control. In field trials we found that transgenic Bt sweet corn, and the foliar insecticides indoxacarb and spinosad are all less toxic to the most abundant predators in sweet corn (Coleomegilla maculate [DeGeer], Harmonia axyridis [Pallas], and Orius insidiosus [Sav]) than the pyrethroid lambda cyhalothrin. Indoxacarb, however, was moderately toxic to coccinellids and spinosad and indoxacarb were somewhat toxic to O. insidiosus nymphs at field rates. Bt sweet corn and spinosad were able to provide control of the lepidopteran pests better than or equal to lambda cyhalothrin. The choice of insecticide material made a significant impact on survival of the pests and predators, while the frequency of application mainly affected the pests and the rate applied had little effect on either pests or predators. These results demonstrate that some of the new products available in sweet corn allow a truly integrated biological and chemical pest control program in sweet corn, making future advances in conservation, augmentation and classical biological control more feasible.  相似文献   

17.
The area devoted to growing transgenic plants expressing insecticidal Cry proteins derived from Bacillus thuringiensis (Bt) is increasing worldwide. A major concern with the adoption of Bt crops is their potential impact on nontarget organisms including biological control organisms. Regulatory frameworks should advocate a step-wise (tiered) approach to assess possible nontarget effects of Bt crops. Laboratory and glasshouse studies have revealed effects on natural enemies only when Bt-susceptible, sublethally damaged herbivores were used as prey or host, with no indication of direct toxic effects. Field studies have confirmed that the abundance and activity of parasitoids and predators are similar in Bt and non-Bt crops. In contrast, applications of conventional insecticides have usually resulted in negative impacts on biological control organisms. Because Bt-transgenic varieties can lead to substantial reductions in insecticide use in some crops, they can contribute to integrated pest management systems with a strong biological control component.  相似文献   

18.
As growers switch to transgenic crops and selective insecticides that are less toxic to natural enemies, natural enemies can become more important in agricultural pest management. Current decision-making guides are generally based on pest abundance and do not address pest and natural enemy toxicity differences among insecticides or the impact of natural enemies on pest survival. A refined approach to making pest management decisions is to include the impact of natural enemies and insecticides, thereby better integrating biological and chemical control. The result of this integration is a dynamic threshold that varies for each product and the level of biological control expected. To demonstrate the significance of conserved biological control in commercial production, a decision-making guide was developed that evaluates control options for European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), in sweet corn, Zea mays L., where the primary natural enemies are generalist predators. Management options are lambda-cyhalothrin (broad-spectrum insecticide), spinosad (selective insecticide), Trichogramma ostriniae (Peng and Chen) (Hymenoptera: Trichogrammatidae) (parasitoid), and Bacillus thuringiensis (Bt) sweet corn (transgenic variety). The key factors influencing thresholds for all treatments are the intended market, predator populations, and the presence of alternative foods for the predators. Treatment cost is the primary factor separating the threshold for each treatment within a common scenario, with the lowest cost treatment having the lowest pest threshold. However, when the impact of a treatment on natural enemies is projected over the 3-wk control period, the impact of the treatment on predators becomes the key factor in determining the threshold, so the lowest thresholds are for broad-spectrum treatments, whereas selective products can have thresholds > 6 times higher by the third week. This decision guide can serve as a framework to help focus future integrated pest management research and to aid in the selection of pest management tools.  相似文献   

19.
In cotton-growing areas of Central Africa, timing of host crops and pest management practices in annual rainfed cropping systems result in a shifting mosaic of habitats that influence the dynamics and resistance of Helicoverpa armigera (Hübner) populations on spatial scales, both within and across seasons. From 2002 to 2006, regional and local resistance was monitored among cotton fields and among the major host plants of the bollworm. From 2002, pyrethroid resistance increased within and across cotton-growing seasons to reach a worrying situation at the end of the 2005 growing season. Cotton crops played a fundamental role in the increase in seasonal resistance, even if the intensive use of insecticides on local tomato crops strongly concentrated resistance alleles in residual populations throughout the off-season. Due to the relative stability of resistance in H. armigera populations despite a long off-season, we believe that after the dispersal of the moths southwards at the end of the growing season, reverse migration mainly accounts for the reconstitution of populations at the onset of the following growing season. In addition, local resistance monitoring in 2005 and 2006 showed that it was possible to control the increase in resistance by temporarily stopping the use of pyrethroids during the period of peak infestation of cotton by H. armigera. On the other hand, the similar resistance frequency of populations sampled from sprayed and unsprayed synchronous hosts confirmed the absence of reproductive isolation between adults. As a result, diversity in cropping systems should be encouraged by planting alternative host plants to provide a mosaic of habitats, which in return would provide insecticide-free refuges. The implications for insecticide resistance management in annual cropping systems are discussed.  相似文献   

20.
Beneficial arthropods and wheat insects were monitored using sticky traps through large-scale field in Saxony, Germany before and after insecticide applications. The tested compounds (Karate, Biscaya and NeemAzal T/S) were sprayed twice at Elongation stage (GS 32) and at the heading stage (GS 55). Monitoring was conducted for four weeks after each treatment. Cereal aphids, thrips, leafhoppers, cereal leaf beetles, cereal bugs and also many natural enemies such as predators (lady beetles, lacewings, syrphids, dance flies and spiders) and parasitoids (parasitic wasps) were surveyed. The results proved that Karate caused the highest per cent mortality to wheat insect pests. Karate also reduced natural enemy diversities. Biscaya and NeemAzal T/S is correlated with an equivalent mortality per cents to wheat insect pests and resulted in a smaller effects on natural enemies compared with Karate. Leafhoppers were less affected than Thrips and cereal bugs. Parasitoid wasps and spider were more tolerant, while lacewings and dance flies were more susceptible to insecticide effects. Finally, natural insecticides and predators and parasitoids could be highly compatible with a hygienic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号