首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of a ternary initiation complex containing Met-tRNAf, GTP and eukaryotic initiation factor 2, is the first step in sequential assembly of the initiation complex. The concentration of GTP required for half maximal formation of the ternary complex is 2.5 with 10(-6) M. GDP is a potent competitive inhibitor of ternary complex formation with Ki = 3.4 with 10(-7) M. The nucleotide binding site on eukaryotic initiation factor 2 demonstrates relative specificity for GDP with KD(GDP) = 3.0 with 10(-8) M; 100-fold higher concentrations of GTP than GDP are required for displacement of either [(3)H]GDP or [(3)h]gtp from the necleotide binding site. An ATP-dependent stimulation of ternary complex formation observed in partially purified initiation factor preparations is due to nucleoside diphosphate kinase (EC 2.7.4.6) which serves to remove inhibitory levels of GDP by phosphorylation with ATP. Since GTP is hydrolyzed to GDP during protein synthesis, this provides a mechanism by which the ATP:ADP ratio may regulate the rate of initiation of protein synthesis.  相似文献   

2.
The process of ATP or GTP synthesis by bovine heart submitochondrial particles involves the binding of ADP or GDP to 3 exchangeable sites I, II, and III, and only upon substrate occupation of site III does rapid ATP or GTP synthesis take place. The dissociation constants determined for ADP were KADPI less than or equal to 10(-8) M, KADPII approximately 10(-7) M, and KADPIII (equivalent to apparent KADPm), approximately 3 x 10(-6) M in the low Km mode and KADPIII approximately 150 x 10(-6) M in the high Km mode. For GDP, these constants were KGDPI approximately 10(-6)-10(-5) M, KGDPII approximately 10(-4) M, and KGDPIII approximately 10(-3) M when NADH was the respiratory substrate (Matsuno-Yagi, A., and Hatefi, Y. (1990) J. Biol. Chem. 265, 82-88). Because of its low affinity for the above binding sites, GDP at micromolar concentrations does not lead to GTP synthesis. However, as shown in this paper, micromolar [GDP] undergoes phosphorylation in the presence of micromolar concentrations of ADP. Under these conditions, both ATP and GTP are synthesized. GDP inhibits ATP synthesis with KGDPi congruent to 7 microM, while ADP promotes GTP synthesis in a reaction that requires inorganic phosphate (apparent KPim = 2-3 mM) and is inhibited by uncouplers and inhibitors of the ATP synthase complex. The ADP-promoted GTP synthesis exhibited an "apparent" KGDPm = 4 microM and an "apparent" Vmax = 11 nmol of GTP (min.mg of protein)-1. These results were interpreted to mean that (a) micromolar [ADP] occupies sites I and II, allowing site III to bind and phosphorylate GDP, and (b) the KGDPm and Vmax calculated under these conditions represent values for the low Km-low Vmax mode of GTP synthesis, which in the absence of ADP is not detectable because of the positive cooperativity phase of GTP synthesis with the high KGDPII approximately 10(-4) M.  相似文献   

3.
The genome of Saccharomyces cerevisiae contains 35 members of a family of transport proteins that, with a single exception, are found in the inner membranes of mitochondria. The transport functions of the 16 biochemically identified mitochondrial carriers are concerned with shuttling substrates, biosynthetic intermediates, and cofactors across the inner membrane. Here the identification and functional characterization of the mitochondrial GTP/GDP carrier (Ggc1p) is described. The ggc1 gene was overexpressed in bacteria. The purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. It transported GTP and GDP and, to a lesser extent, the corresponding deoxynucleotides and the structurally related ITP and IDP by a counter-exchange mechanism. Transport was saturable with an apparent K(m) of 1 microm for GTP and 5 microm for GDP. It was strongly inhibited by pyridoxal 5'-phosphate, bathophenanthroline, tannic acid, and bromcresol purple but little affected by the inhibitors of the ADP/ATP carrier carboxyatractyloside and bongkrekate. Furthermore, in contrast to the ADP/ATP carrier, the Ggc1p-mediated GTP/GDP heteroexchange is H(+)-compensated and thus electroneutral. Cells lacking the ggc1 gene had reduced levels of GTP and increased levels of GDP in their mitochondria. Furthermore, the knock-out of ggc1 results in lack of growth on nonfermentable carbon sources and complete loss of mitochondrial DNA. The physiological role of Ggc1p in S. cerevisiae is probably to transport GTP into mitochondria, where it is required for important processes such as nucleic acid and protein synthesis, in exchange for intramitochondrially generated GDP.  相似文献   

4.
Neonatal rat brains were examined for changes in levels of ATP, ADP, AMP, cyclic AMP, GTP, GDP, UTP, UDP, UMP, and CTP during exposure to 100% nitrogen for 20 min and subsequent recovery in air. During hypoxia, ATP, GTP, UTP, and CTP levels and the GTP/GDP ratio decreased to 38, 50, 26, 21, and 21%, respectively, of control levels. No significant change in cyclic AMP level was observed. The decrease in the total uridine nucleotide pool during hypoxia was markedly greater (to 53% of control levels) than that in the total adenine nucleotide pool (to 92% of control levels). During recovery, ATP and GTP levels were rapidly and almost completely restored. On the other hand, CTP levels returned slowly to control values after a 2-h recovery period. Restoration of the UTP level was slow and incomplete (87% of the control value even after a 3-h recovery period). The GTP/GDP ratio also did not return to normal. These data suggest that hypoxic insult to the neonate may have an effect on the synthesis of nucleotidyl sugars, phospholipids, and proteins in the brain, resulting in significant problems with developmental processes of the brain. The present study also showed that the delayed restorations of the UTP level and the GTP/GDP ratio were not seen in the brains of adult rats subjected to acute severe hypoxic insult.  相似文献   

5.
Gelsolin is a Ca(2+)-regulated actin-modulating protein found in a variety of cellular cytoplasm and also in blood plasma. Affinity separation of human plasma gelsolin was successfully accomplished by eluting the protein with a low concentration of nucleoside polyphosphate from immobilized Cibacron Blue F3GA (1, 2). This finding was followed by the demonstration that the protein had one class of ATP binding site with Kd = 2.8 x 10(-7) M, which saturated at an ATP/gelsolin ratio of 0.6 in the absence of Ca2+ (3). To obtain further information on the nucleotide binding properties of gelsolin, binding studies were done in the presence of EGTA with GTP, ADP, and GDP by equilibrium dialysis. Incubation of plasma gelsolin with GTP resulted in binding of 0.6 mol of GTP per mol of protein with a dissociation constant of 1.8 x 10(-6) M, indicating that ATP binds to gelsolin with higher affinity than GTP. Neither ADP nor GDP at up to 100 microM appreciably bound to gelsolin at a physiological salt concentration. Then, the effects of divalent metal ions on the ATP binding to plasma gelsolin were examined. Gelsolin bound to ATP with Kd = 2.4 x 10(-6) M in a solution containing 2 mM MgCl2, whereas micromolar free Ca2+ concentrations inhibited ATP binding. Furthermore, addition of Ca2+ rapidly reversed the preformed nucleotide binding to gelsolin, suggesting that Ca2+ binding to gelsolin leads to a conformational change which disrupts a nucleotide binding fold in the protein molecule.  相似文献   

6.
A sensitive assay method developed to examine the effects of subtle, physiologically relevant, changes in the levels of adenine and guanine mono-, di-, and triphosphorylated nucleotides specifically on the initiation of protein synthesis is described. Initiation rates are quantified by measuring the amount of protein synthesis resulting from the run-off of ribosomes which have initiated during defined intervals in a modified in vitro protein-synthesizing system developed from Ehrlich ascites tumor cell lysates (Henshaw, E.C., and Panniers, R. (1983) Methods Enzymol. 101, 616-629). The modifications include the attenuation of the ATP-regenerating system so that the relative nucleotide levels more nearly reflect actual intracellular conditions. With this system the rate of initiation is highly sensitive to changes in the ADP:ATP and GDP:GTP ratios, but indifferent to the absolute levels of either diphosphate. While the tight coupling of these two ratios by endogenous nucleoside diphosphate kinase activity prevents the independent manipulation of either ratio, the data do eliminate both AMP and GMP per se as inhibitory species. The close agreement of our data calculated in terms of energy charge to previously published results on overall rates of protein synthesis in rat thymocytes (Mendelsohn, S.K., Nordeen, S.K., and Young, D.A. (1977) Biochem. Biophys. Res. Commun. 79, 53-60) continues to suggest a physiologically relevant regulatory influence of subtle changes in nucleotides acting at the level of the initiation reaction.  相似文献   

7.
A major site of regulation of polypeptide chain initiation is the binding of Met-tRNA to 40 S ribosomal subunits which is mediated by eukaryotic initiation factor 2 (eIF-2). The formation of ternary complex, eIF-2.GTP.Met-tRNA, is potently inhibited by GDP. Measurement of the parameters for guanine nucleotide binding to eIF-2 is critical to understanding the control of protein synthesis by fluctuations in cellular energy levels. We have compared the dissociation constants (Kd) of eIF-2.GDP and eIF-2.GTP and find that GDP has a 400-fold higher affinity for GDP than GTP. The Kd for GDP is almost an order of magnitude less than has been reported previously. The difference between the Kd values for the two nucleotides is the result of a faster rate constant for GTP release, the rate constants for binding being approximately equal. This combination of rate constants and low levels of contaminating GDP in preparations of GTP can explain the apparently unstable nature of eIF-2.GTP observed by others. Mg2+ stabilizes binary complexes slowing the rates of release of nucleotide from both eIF-2.GDP and eIF-2.GTP. The competition between GTP and GDP for binding to eIF-2.guanine nucleotide exchange factor complex has been measured. A 10-fold higher GTP concentration than GDP is required to reduce [32P] GDP binding to eIF-2.guanine nucleotide exchange factor complex by 50%. The relevance of this competition to the regulation of protein synthesis by energy levels is discussed.  相似文献   

8.
Kinetic and nucleotide binding studies have shown that submitochondrial particles from bovine heart possess three exchangeable binding sites for ADP or GDP. In order of decreasing affinity at neutral pH, these sites will be referred to as sites I, II, and III, and their respective dissociation constants as KI, KII, and KIII. In oxidative phosphorylation experiments in the presence of saturating amounts of inorganic phosphate, rapid ATP (or GTP) synthesis occurred only upon ADP (or GDP) binding to site III. The Eadie-Hofstee plots (v/[S] on the ordinate versus v on the abscissa) of the kinetics of ATP (or GTP) synthesis at variable ADP (or GDP) were, therefore, composed of an initial upward phase, indicating positive cooperativity with respect to substrate concentration, followed by a downward phase where rapid product formation took place. These data allowed calculation of KII from the upward phase and KIII (equivalent to apparent Km) from the downward phase. KI was estimated from Scatchard plots of binding data with radiolabeled ADP or GDP. Thus, together with our previous results, these findings have allowed characterization of the process of ATP or GTP synthesis by bovine-heart submitochondrial particles in terms of KI, KII, KIII, and kcat.  相似文献   

9.
The CDC25 gene product is a guanine nucleotide exchange factor for Ras proteins in yeast. Recently it has been suggested that the intracellular levels of guanine nucleotides may influence the exchange reaction. To test this hypothesis we measured the levels of nucleotides in yeast cells under different growth conditions and the relative amount of Ras2-GTP. The intracellular GTP/GDP ratio was found to be very sensitive to growth conditions: the ratio is high, close to that of ATP/ADP during exponential growth, but it decreases rapidly before the beginning of stationary phase, and it drops further under starvation conditions. The addition of glucose to glucose-starved cells causes a fast increase of the GTP/GDP ratio. The relative amount of Ras2-GTP changes in a parallel way suggesting that there is a correlation with the cytosolic GTP/GDP ratio. In addition 'in vitro' mixed-nucleotide exchange experiments done on purified Ras2 protein demonstrated that the GTP and GDP concentrations influence the extent of Ras2-GTP loading giving further support to their possible regulatory role.  相似文献   

10.
Abstract: Initiation factor elF-2-like activity has been measured in the 0.5 M-KCl wash of rat brain microsomes. Ternary complex formation (elF-2 GTP Met-tRNAr), one of the early steps in protein synthesis initiation, is optimal in a high-[K+], low-[Na+] environment. Mg2+, Ca2+, Li+, spermine and spermidine reduce and the antibiotic aurin tricarboxylic acid can effectively eliminate ternary complex formation. The formation of ternary complex requires GTP or its nonhydrolyzable analog, GMP-P(NH)P. Ternary complex formation is particularly sensitive to the ratio of GDP to GTP. When the ratio of GDP to GTP added is 1: 10, ternary complex formation is inhibited between 40 and 50% over a 30-fold concentration range of GTP. Other nucleotides exert little inhibition. These results suggest that the regulation of brain protein synthesis initiation may be tightly linked to the ratios of guanosine nucleotide concentrations in brain tissue.  相似文献   

11.
The effect of nucleotide energy levels in vivo on the different steps of protein synthesis has been studied. Hepatic anoxia was induced by interrupting the blood portal-vein flow. At 5 min of anoxia ATP fell to 59% of the control values and the amino acid incorporation into protein was inhibited by more than 70%. This strong inhibition was not paralleled by polyribosomal breakdown. On the contrary, when fasted rats were used, at 5 min of anoxia the ribosomal state of aggregation was found to increase. Longer periods of anoxia resulted in a further decrease in triphosphonucleoside content and polyribosomal breakdown. Based on these results and other reports from the literature it is concluded that the Km for the GTP of the peptide-chain-elongation mechanism must be higher than the Km of the initiation step. This finding implies that variations of nucleotide levels in vivo within the physiological range may control protein synthesis at the elongation step without apparent changes in the polyribosomal profiles.  相似文献   

12.
Metabolic and Energetic Changes During Apoptosis in Neural Cells   总被引:1,自引:0,他引:1  
Abstract: Changes in cellular energetic and metabolic parameters were analyzed at several time points during apoptosis of differentiated PC12 cells following removal of nerve growth factor (NGF). As approximately 60% of the population died during the period of study (24 h), most of the measured metabolic indicators declined over time. However, this decline paralleled the overall decrease in cellular viability, suggesting that, in individual cells, a compromised metabolic state occurred suddenly and very late in the death process. For example, when expressed as a function of viable cells, protein and RNA synthesis did not decrease until 24 h. Glucose utilization in live cells was never significantly reduced relative to control levels; lactate production decreased slightly within 4–8 h after NGF removal, but eventually rebounded to 122% of control levels by 24 h. ATP levels dropped 27% in an early predeath period, but then returned to near control levels (on a per-live-cell basis) once the population actively began to die. The ATP/ADP ratio remained at least 84% of control throughout. UTP/UDP and GTP/GDP ratios did not change significantly at any time point.  相似文献   

13.
It is thought that eucaryotic elongation factor eEF-Ts catalyzes the replacement of GDP for GTP on eucaryotic elongation factor eEF-Tu. We have found that eEF-Ts displays a strong nucleoside diphosphate phosphotransferase activity. This transferase activity resides in a dimer molecule of a subunit molecular weight close to 30,000. The transfosforylating activity of eEF-Ts results in a stimulatory effect of ATP, GTP, UTP and CTP on protein synthesis provided that GDP is present. The specificity for guanine nucleotides in protein synthesis resides only in eEF-Tu.  相似文献   

14.
Previous studies demonstrating hydrolysis of phosphatidylinositol bisphosphate (PIP2) and generation of inositol phosphates in neutrophils exposed to 20.0 mM NaF provide indirect evidence that activation of phospholipase-associated guanine nucleotide regulatory protein, a guanine nucleotide binding protein which regulates the activation of a membrane inositol-specific phospholipase C, is an early event in the neutrophil stimulus-response pathway triggered by fluoride. Consistent with this hypothesis, exposure of a plasma membrane rich preparation isolated from 32P labeled neutrophils to 20.0 mM NaF resulted in hydrolysis of labeled PIP2. Levels of other phospholipids were not affected. Inositol bisphosphate and inositol trisphosphate were detected in extracts of neutrophil plasma membranes exposed to fluoride. To further explore the involvement of guanine nucleotides in functional responses of intact neutrophils triggered by fluoride, we preincubated cells with 2-beta-D-ribofuranosylthiazole-4-carboxamide (tiazofurin), a selective inhibitor of inosine monophosphate dehydrogenase, to diminish guanine nucleotide synthesis and then compared superoxide generation induced by FMLP, PMA, digitonin, and 20.0 mM NaF to intracellular levels of guanine nucleotides. Preincubation of neutrophils for 2.5 h at 37 degrees C with tiazofurin resulted in dose-dependent depletion of GTP and GDP. Maximal depletion of guanine nucleotides required relatively high levels of tiazofurin (200 to 400 microM) and resulted in a 55 to 60% reduction of GTP and GDP. The effects of tiazofurin on guanine nucleotides levels were not observed when neutrophils were preincubated at 4 degrees C. AT 37 degrees C, tiazofurin also decreased intracellular ATP and ADP levels but adenine nucleotide depletion was less pronounced than guanine nucleotide depletion for each concentration of tiazofurin used. When tiazofurin was removed by washing cells after incubation, adenine nucleotide quickly returned to preincubation values but guanine nucleotide levels remained depressed. Addition of exogenous guanosine (200 microM) prevented tiazofurin-dependent depletion of guanine nucleotides but had no influence on adenine nucleotide depletion. Superoxide released triggered by FMLP and F- was inhibited to an extent similar to that of guanine nucleotide depletion under different conditions of preincubation. Inhibition of superoxide release was not observed if cells were preincubated at 4 degrees C, was not rapidly reversible, and was not observed when guanosine was added with tiazofurin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Rat corticoencephalic cell cultures were investigated by high performance liquid chromatography for changes in the levels of adenosine 5'-triphosphate (ATP), guanosine 5'-triphosphate (GTP), uridine 5'-triphosphate (UTP), cytidine 5'-triphosphate (CTP), and the respective nucleoside diphosphates. Hypoxia was induced by gassing the incubation medium for 30 min with 100% argon. Removal of glucose was caused by washing the cultures in glucose-free medium at the beginning of the 30 min incubation period. Whereas hypoxia or glucose-deficiency alone failed to alter the nucleotide levels, the combination of these two manipulations was clearly inhibitory. Diazoxide (300 microM) an opener of ATP-dependent potassium channels (K(ATP)) did not alter the nucleotide contents either in a normoxic and glucose-containing medium, or a hypoxic and glucose-free medium. By contrast, the K(ATP) channel antagonist tolbutamide (300 microM) aggravated the hypoxic decrease of nucleotide levels in a glucose-free medium, although it was ineffective in a normoxic and glucose-containing medium. Hypoxia and glucose-deficiency decreased the ATP/ADP and UTP/UDP ratios, but failed to change the GTP/GDP ratio. Diazoxide and tolbutamide (300 microM each) had no effect on the nucleoside triphosphate/diphosphate ratios either during normoxic or during hypoxic conditions. In conclusion, corticoencephalic cultures are rather resistant to in vitro ischemia. Although they clearly respond to the blockade of plasmalemmal K(ATP) channels (plasmaK(ATP)) by tolbutamide, these channels appear to be maximally open as a consequence of the fall in intracellular nucleotides and, therefore, diazoxide has no further effect.  相似文献   

16.
J E Allende 《FASEB journal》1988,2(8):2356-2367
G proteins that serve to transduce external signals in membranes share with protein synthesis factors and tubulin structural and functional features that are common to proteins that participate in reversible GTP-mediated macromolecular interactions. These proteins can bind GTP and GDP with high affinity, adopting different structures depending on whether they are complexed with the nucleotide diphosphate or triphosphate. The GTP.protein complex has high affinity for an acceptor macromolecule (or complex of macromolecules) and interacts with it, affecting its activity. These GTP-binding proteins also possess an intrinsic GTPase activity that is generally stimulated by its interaction with the acceptor. The GTPase activity converts the bound GTP to GDP, switching the configuration of the complexed protein to one of low affinity for the acceptor and causing its dissociation. The protein.GDP complex must exchange its GDP for GTP to allow the protein to acquire the high-affinity structure that can cycle back to the acceptor macromolecule. This exchange of guanine nucleotides requires in several instances exchange factors that can regulate the whole process. A detailed comparison of the features of the different systems is made with respect to structural similarities, regulation by protein phosphorylation, ADP ribosylation by bacterial toxins, and requirements for exchange factors. It is also proposed that there is a similar mechanism that involves ATP/ADP-binding proteins.  相似文献   

17.
The interaction of a large number of ATP and ADP analogs with nitrogenase from Azotobacter vinelandii, Klebsiella pneumoniae, and Clostridium pasteurianum has been examined. Only 1,N6-etheno-ATP and 2'-deoxy-ATP served as substrates for acetylene reduction. Other triphosphates including GTP, ITP, 8-Br-ATP, alpha,beta-methylene ATP, beta,gamma-methylene ATP, 6-chloropurine riboside triphosphate, and AMP-PNP were inert, showing less than 50% inhibition at levels up to two- to fivefold greater than ATP. Xanthosine triphosphate behaved simply as a chelator of magnesium, activating the enzyme at low levels but strongly inhibiting at high levels. When nucleotide diphosphates were tested as inhibitors with enzyme from A. vinelandii, GDP, dGDP, and 6-chloropurine riboside diphosphate were ineffective, XDP was three- to fivefold less effective, and dADP and 1,N6-etheno-ADP were about equally as effective as ADP. With enzyme from C. pasteurianum, dADP was twofold less effective than ADP, XDP was fivefold less effective, and IDP and 1,N6-etheno-ADP appeared to be ineffective. Results with enzyme from K. pneumoniae were very similar to those obtained with A. vinelandii. Different metal ions were tested in the presence of both ATP and ADP to determine whether preferential binding to one nucleotide or the other might alter the ADP/ATP ratio needed for 50% inhibition of activity. Magnesium and manganese gave the same ratio, while with Fe and Co, slightly less ADP was required for equivalent inhibition. Nickel appeared to reduce the sensitivity of A. vinelandii nitrogenase to ADP inhibition while increasing that of C. pasteurianum, but both effects were less than twofold. Calcium, strontium, and aluminum ions were inert with enzymes from these organisms. Cd and Zn were also ineffective with K. pneumoniae. Two isomers of ATP beta S were prepared by enzymatic synthesis from ADP beta S. The A form was a more potent inhibitor of A. vinelandii nitrogenase.  相似文献   

18.
Most in vitro protein synthesis systems require a supply of GTP for the formation of translation initiation complexes, with two GTP molecules per amino acid needed as an energy source for a peptide elongation reaction. In order to optimize protein synthesis reactions in a continuous‐flow wheat embryo cell‐free system, we have examined the influence of adding GTP and found that the system does not require any supply of GTP. We report here the preparation of a wheat embryo extract from which endogenous GTP was removed by gel filtration, and the influence of adding GTP to the system on protein synthesis reactions. Using Green Fluorescent Protein (GFP) as a reporter, higher levels of production were observed at lower concentrations of GTP, with the optimal level of production obtained with no supply of GTP. A HPLC‐based analysis of the extract and the translation mixture containing only ATP as an energy source revealed that GTP was not detectable in the extract, however, 35 μM of GTP was found in the translation mixture. This result suggests that GTP could be generated from other compounds, such as GDP and GMP, using ATP. A similar experiment with a C‐terminally truncated form of human protein tyrosine phosphatase 1B (hPTP1B1‐320) gave almost the same result. The wheat embryo cell‐free translation system worked most efficiently without exogenous GTP, producing 3.5 mg/mL of translation mixture over a 48‐h period at 26°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
J G Wise  A E Senior 《Biochemistry》1985,24(24):6949-6954
Nucleotide-depleted F1-ATPase from Escherichia coli was reconstituted with F1-depleted membranes and shown to catalyze high rates of oxidative phosphorylation of ADP and GDP. Adenine nucleotide became bound to the nonexchangeable nucleotide sites on membrane-bound F1 during ATP synthesis, but binding of guanine nucleotides to nonexchangeable sites during GTP synthesis was not detectable. It was possible to reload the nonexchangeable sites on nucleotide-depleted F1 with radioactive adenine nucleotide prior to membrane reconstitution. The radioactive adenine nucleotide did not exchange significantly during oxidative phosphorylation of ADP or GDP. The amount of nonexchangeable adenine nucleotide found in membrane-bound F1 was the same when the nonexchangeable sites were reloaded either prior to membrane reconstitution of the F1 or after membrane reconstitution with nucleotide-free F1 followed by a burst of oxidative phosphorylation of ADP. The results showed that occupation of the nonexchangeable sites on F1 by tightly bound nucleotide is not required for oxidative phosphorylation of GDP (a physiological activity of F1 in the bacterial cell). Also, the results confirm directly that the adenine-specific nonexchangeable sites on F1 are noncatalytic sites. Using this experimental approach, it was possible to look for a regulatory effect of the nonexchangeable nucleotide on oxidative phosphorylation. Nucleotide-depleted F1 was first reloaded with (i) ATP, (ii) ADP, (iii) 5'-adenylyl imidodiphosphate, or (iv) zero nucleotide, and was then reconstituted with F1-depleted membranes. The reconstituted membranes were compared in respect to rates of oxidative phosphorylation of GDP and Km values of GDP and Pi. No regulatory role for the nonexchangeable nucleotide was evident.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The adenine nucleotide carrier from maize (Zea mays L. cv B 73) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. Sodium dodecyl sulfate-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 32 kD. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5'-phosphate-sensitive ATP/ATP exchange. It was purified 168-fold with a recovery of 60% and a protein yield of 0.25% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ADP, ATP, GDP, and GTP, and was inhibited by atractyloside, bongkrekate, phenylisothiocianate, pyridoxal 5'-phosphate, and mersalyl (but not N-ethylmaleimide). Maximum initial velocity of the reconstituted ATP/ATP exchange was determined to be 2.2 mumol min-1 mg-1 protein at 25 degrees C. The half-saturation constants and the corresponding inhibition constants were 17 microM for ATP, 26 microM for ADP, 59 microM for GTP, and 125 microM for GDP. The activation energy of the ATP/ATP exchange was 48 kilojoule/mol between 0 and 15 degrees C, and 22 kilojoule/mol between 15 and 35 degrees C. Partial amino acid sequences showed that the purified protein was the product of the ANT-G1 gene sequenced previously (B. Bathgate, A. Baker, C.J. Leaver [1989] Eur J Biochem 183: 303-310).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号