共查询到20条相似文献,搜索用时 15 毫秒
1.
Thylakoids and Photosystem II particles prepared from the cyanobacterium Synechococcus PCC 7942 washed with a HEPES/glycerol buffer exhibited low rates of light-induced oxygen evolution. Addition of either Ca2+ or Mg2+ to both thylakoids and Photosystem II particles increased oxygen evolution independently, maximal rates being obtained by addition of both ions. If either preparation was washed with NaCl, light induced O2 evolution was completely inhibited, but re-activated in the same manner by Ca2+ and Mg2+ but to a lower level. In the presence of Mg2+, the reactivation of O2 evolution by Ca2+ allowed sigmoid kinetics, implying co-operative binding. The results are interpreted as indicating that not only Ca2+, but also Mg2+, is essential for light-induced oxygen evolution in thylakoids and Photosystem II particles from Synechococcus PC 7942. The significance of the reactivation kinetics is discussed. Reactivation by Ca2+ was inhibited by antibodies to mammalian calmodulin, indicating that the binding site in Photosystem II may be analogous to that of this protein.Abbreviation HEPES
n-2-Hydroxyethylpiperazine--2-ethane sulphonic acid 相似文献
2.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics. 相似文献
3.
T Coelho-Sampaio A Teixeira-Ferreira A Vieyra 《The Journal of biological chemistry》1991,266(16):10249-10253
In this work we report an unusual pattern of activation by calmodulin on the (Ca2+ + Mg2+)-ATPase from basolateral membranes of kidney proximal tubule cells. The activity of the ATPase depleted of calmodulin is characterized by a high Ca2+ affinity (Km = 2.2-3.4 microM) and a biphasic dependence on ATP concentration. The preparation responded to the addition of calmodulin by giving rise to a new Ca2+ site of very high affinity (Km less than 0.05 microM). Calmodulin antagonists had diverse effects on ATPase activity. Compound 48/80 inhibited calmodulin-stimulated activity by 70%, whereas calmidazolium did not modify this component. In the absence of calmodulin, 48/80 still acted as an antagonist, increasing the Km for Ca2+ to 5.7 microM and reducing enzyme turnover by competing with ATP at the low affinity regulatory site. Calmidazolium did not affect Ca2+ affinity, but it did displace ATP from the regulatory site. At fixed Ca2+ (30 microM) and ATP (5 mM) concentrations, Pi protected against 48/80 and potentiated inhibition by calmidazolium. At 25 microM ATP, Pi protected against calmidazolium inhibition. We propose that the effects of ATP and Pi arise because binding of the drugs to the ATPase occurs mainly on the E2 forms. 相似文献
4.
Aequorin, which is a calcium-sensitive photoprotein and a member of the EF-hand superfamily, binds to Mg2+ under physiological conditions, which modulates its light emission. The Mg2+ binding site and its stabilizing influence were examined by NMR spectroscopy. The binding of Mg2+ to aequorin prevented the molecule from aggregating and stabilized it in the monomeric form. To determine the structural differences between Mg2+-bound and free aequorin, we have performed backbone NMR assignments of aequorin in the Mg2+-free state. Mg2+ binding induces conformational changes that are localized in the EF-hand loops. The chemical shift difference data indicated that there are two Mg2+-binding sites, EF-hands I and III. The Mg2+ titration experiment revealed that EF-hand III binds to Mg2+ with higher affinity than EF-hand I, and that only EF-hand III seems to be occupied by Mg2+ under physiological conditions. 相似文献
5.
Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle 总被引:16,自引:11,他引:5
Fragmented sarcoplasmic reticulum isolated from skeletal muscle of the rabbit has a cation-binding capacity of about 350 µeq/g of protein at neutral pH. The same binding sites bind Ca, Mg, K, and H ions and, consequently, the selective binding of Ca induced by ATP releases an amount of the other cations equivalent to the Ca taken up. At pH values below 6.2, an increasing number of binding sites are associated with H+, and ATP induces exchange of Ca mostly for H+. At pH values above 6.2, the binding sites exist in the form of Mg and K, and Ca is bound in exchange for these cations. The total bound Ca + Mg + K, expressed in microequivalents of cations bound per gram of protein, is approximately constant at various pCa values, which indicates a stoichiometric exchange of Ca for the other cations. To accomplish the same degree of exchange of Ca for other cations bound, in the absence of ATP, concentrations of free Ca++ of about 1000-fold higher than those needed in the presence of ATP are required in the medium. We cannot distinguish between a mechanism whereby Ca actively transported into a compartment of the microsomal vesicles containing also the binding sites is bound passively to these sites in exchange for Mg, K, and H and another in which ATP selectively increases the affinity of surface-binding sites for Ca. Irrespective of the mechanism of accumulation, the Ca retained does not contribute to the activity of the cation in the membrane fraction. Caffeine (10 mM) has no effect on the binding of Ca, but releases a more labile fraction of Ca, which presumably accumulates in excess of the bound Ca. Procaine (5 mM) antagonizes the effect of caffeine. Acetylcholine and epinephrine have no effect on the binding of Ca. 相似文献
6.
The effectiveness of the nonmetabolizable second messenger analogue DL-myo-inositol 1,4,5-trisphosphorothioate (IPS3) described by Cooke, A. M., R. Gigg, and B. V. L. Potter, (1987b. Jour. Chem. Soc. Chem. Commun. 1525-1526.) was examined in triads purified from rabbit skeletal muscle. A Ca2+ electrode uptake-release assay was used to determine the size and sensitivity of the IPS3-releasable pool of Ca2+ in isolated triads. Uptake was initiated by 1 mM MgATP, pCa 5.8, pH 7.5 Release was initiated when the free Ca2+ had lowered to pCa approximately 7. We found that 5-25 microM myo-inositol 1,4,5-trisphosphate (IP3), and separately IPS3, consistently released 5-20% of the Ca2+ pool actively loaded into triads. Single channel recording was used to determine if ryanodine receptor Ca2+ release channels were affected by IPS3 at the same myoplasmic Ca2+ and IPS3 concentrations. Open probability of ryanodine receptor Ca2+ release channels was monitored in triads fused to bilayers over long periods (200 s) in the absence and following addition of 30 microM IPS3 to the same channel. At myoplasmic pCa approximately 7, IPS3 had no effect in the absence of MgATP (Po = 0.0094 +/- 0.001 in control and Po = 0.01 +/- 0.006 after IPS3) and slightly increased activity in the presence of 1 mM MgATP (Po = 0.024 +/- 0.03 in control and Po = 0.05 +/- 0.03 after IPS3). Equally small effects were observed at higher myoplasmic Ca2+. The onset of channel activation by IPS3 or IP3 was slow, on the time scale 20-60 s. We suggest that in isolated triads of rabbit skeletal muscle, IP3-induced release of stored Ca2+ is probably not mediated by the opening of Ca2+ release channels. 相似文献
7.
The effects of Ca(2+) binding on the dynamic properties of Ca(2+)-binding proteins are important in Ca(2+) signaling. To understand the role of Ca(2+) binding, we have successfully designed a Ca(2+)-binding site in the domain 1 of rat CD2 (denoted as Ca.CD2) with the desired structure and retained function. In this study, the backbone dynamic properties of Ca.CD2 have been investigated using (15)N spin relaxation NMR spectroscopy to reveal the effect of Ca(2+) binding on the global and local dynamic properties without the complications of multiple interactive Ca(2+) binding and global conformational change. Like rat CD2 (rCD2) and human CD2 (hCD2), residues involved in the recognition of the target molecule CD48 exhibit high flexibility. Mutations N15D and N17D that introduce the Ca(2+) ligands increase the flexibility of the neighboring residues. Ca(2+)-induced local dynamic changes occur mainly at the residues proximate to the Ca(2+)-binding pocket or the residues in loop regions. The beta-strand B of Ca.CD2 that provides two Asp for the Ca(2+) undergoes an S(2) decrease upon the Ca(2+) binding, while the DE-loop that provides one Asn and one Asp undergoes an S(2) increase. Our study suggests that Ca(2+) binding has a differential effect on the rigidity of the residues depending on their flexibility and location within the secondary structure. 相似文献
8.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle 总被引:9,自引:6,他引:9
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes. 相似文献
9.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase. 相似文献
10.
11.
C P Moore G Rodney J Z Zhang L Santacruz-Toloza G Strasburg S L Hamilton 《Biochemistry》1999,38(26):8532-8537
The skeletal muscle Ca2+ release channel (RYR1) is regulated by calmodulin in both its Ca2+-free (apocalmodulin) and Ca2+-bound (Ca2+ calmodulin) states. Apocalmodulin is an activator of the channel, and Ca2+ calmodulin is an inhibitor of the channel. Both apocalmodulin and Ca2+ calmodulin binding sites on RYR1 are destroyed by a mild tryptic digestion of the sarcoplasmic reticulum membranes, but calmodulin (either form), bound to RYR1 prior to tryptic digestion, protects both the apocalmodulin and Ca2+ calmodulin sites from tryptic destruction. The protected sites are after arginines 3630 and 3637 on RYR1. These studies suggest that both Ca2+ calmodulin and apocalmodulin bind to the same or overlapping regions on RYR1 and block access of trypsin to sites at amino acids 3630 and 3637. This sequence is part of a predicted Ca2+ CaM binding site of amino acids 3614-3642 [Takeshima, H., et al. (1989) Nature 339, 439-445]. 相似文献
12.
Use of site-directed mutations in the individual Ca2(+)-binding sites of calmodulin to examine Ca2(+)-induced conformational changes 总被引:5,自引:0,他引:5
K Beckingham 《The Journal of biological chemistry》1991,266(10):6027-6030
Mutant versions of the calmodulin of Drosophila melanogaster have been prepared for use in the study of Ca2+ binding and Ca2(+)-induced conformational changes. In each mutant, a conserved glutamic acid residue indicated to play a critical role in Ca2+ binding has been mutated to glutamine in one of the Ca2(+)-binding sites. Thus a series of four proteins, each with an analogous mutation in one of the four binding sites, has been generated. Here the Ca2(+)-induced conformational changes in these proteins have been examined by use of the fluorescent hydrophobic reporter molecule, 9-anthroyl choline. These studies confirm earlier work which indicates that the carboxyl-terminal pair of Ca2(+)-binding sites shows cooperative Ca2+ binding to produce a major conformational change in the protein. However, these studies provide evidence that the sites of the amino-terminal pair are more independent in their Ca2+ binding properties and contribute individually to the conformational changes associated with Ca2+ binding in the amino-terminal half of the protein. This work also indicates that mutation of either of the amino-terminal Ca2(+)-binding sites can influence the conformational change produced by Ca2+ binding to the carboxyl-terminal sites. 相似文献
13.
Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers 总被引:5,自引:6,他引:5
下载免费PDF全文

《The Journal of general physiology》1975,66(4):427-444
Changes in [Mg2+] in a millimolar range have a significant inverse effect on the Ca2+- (or Sr2+)activated tension generation of skeletal muscle fibers. Single frog (Rana pipiens) semitendinosus muscle fibers were "skinned" (sarcolemma removed) and contracted isometrically in bathing solutions of varying [Ca2+] or [Sr2+] and [Mg2+] but a constant pH, [MgATP2-], [K+], [CP2-], [CPK], and ionic strength. Ca2+- (or Sr2+- )activated steady-state tensions were recorded for three [Mg2+]'s: 5 X 10(-5)M, 1 X 10(-3) M, and 2 X 10(-3) M; and these tensions were expressed as the percentages of maximum tension generation of the fibers for the same [Mg2+]. Maximum tension was not affected by [Mg2+] within Ca2+-activating or Sr2+-activating sets of solutions; however, the submaximum Ca2+-(or Sr2+)activated tension is strongly affected in an inverse fashion by increasing [Mg2+]. Mg2+ behaves as a competitive inhibitor of Ca2+ and also affects the degree of cooperativity in the system. At [Mg2+] = 5 X 10(-5)M the shape of tension versus [Ca2+] (or [Sr2+]) curve showed evidence of cooperativity of Ca2+ (or Sr2+) binding or activation of the contractile system. As [Mg2+] increased, the apparent affinity for Ca2+ or Sr2+ and cooperativity of the contractile system declined. The effect on cooperativity suggests that as [Mg2+] decreases a threshold for Ca2+ activation appears. 相似文献
14.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(4):563-570
AbstractObjective: Effect of peroxynitrite on SERCA1 activity was studied in correlation with enzyme carbonylation. Kinetic parameters and location of peroxynitrite effect on SERCA1 were determined.Methods: Carbonyls were determined by immunoblotting. FITC, NCD-4 and Trp fluorescence were used to indicate changes in cytosolic and transmembrane regions of SERCA1.Results: Peroxynitrite-concentration-dependent decrease of SERCA1 activity was associated with elevation of protein carbonyls. 4-HNE was not involved in carbonylation of SERCA1. Increased FITC fluorescence in the presence of peroxynitrite correlated with the decrease of the enzyme affinity to ATP.Discussion and conclusion: Peroxynitrite-induced SERCA1 carbonylation that was not accompanied with the formation of 4-HNE-SERCA1 adducts is indicative of direct oxidation of SERCA1. As assessed by FITC fluorescence and decreased affinity of the enzyme to ATP, peroxynitrite impairment was found to occur in the cytosolic ATP-binding region of SERCA1. 相似文献
15.
Intracellular free magnesium concentration ([Mg2+]i) was measured in enzymatically isolated rat skeletal muscle fibers using the fluorescent dye mag-indo-1. The change in [Mg2+]i produced by a local intracellular microinjection of magnesium pidolate (magnesium pyrrolidone carboxylate) was measured at a given distance from the injection site. In one series of experiments this protocol was tested on isolated fibers that were completely embedded into silicone grease: under these conditions, the injection produced an increase in [Mg2+]i that reached a steady level some time following the injection. The time-course of the [Mg2+]i change could be well accounted for by a model of longitudinal diffusion. The mean apparent Mg2+ diffusion coefficient (D(app)) was 188+/-9 microm2 s(-1) (n = 16), approximately four times lower than the value measured in vitro. This reduction likely results from the effects of cytoplasmic viscosity and of Mg2+ binding to low affinity static sites. Another series of measurements was performed on fibers that were either partially or completely free of silicone: under these conditions, the time course of the change in [Mg2+]i was in many cases more complex than predicted by simple diffusion. 相似文献
16.
B Korczak A Zarain-Herzberg C J Brandl C J Ingles N M Green D H MacLennan 《The Journal of biological chemistry》1988,263(10):4813-4819
17.
18.
19.
S Morimoto 《Biochimica et biophysica acta》1991,1073(2):336-340
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase. 相似文献
20.
Ca(2+)-antagonists change the contractility of isolated detrusor smooth muscle of rabbit influencing the translocation of intra- and extra-cellular Ca2+. This observation might be of clinical importance in the treatment of disorders of urinary bladder function. During field stimulation of different segments of isolated rabbit bladder it was found that the specific Ca(2+)-antagonist nifedipine and verapamil and the non-selective Ca(2+)-antagonist fendiline, prenylamine and cinnarizine blocked the contractions induced by field stimulus to different extent, which decreased from the bladder towards the bladder base (fundus). The highest rate of blocking effect was produced by nifedipine followed by verapamil, prenylamine and fendiline, respectively. Cinnarizine exerted the lowest effect. The change in amplitude and frequency of spontaneous peristalsis was similar in its tendency to the blockade of the field stimulus induced contraction. 相似文献