首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Slingshot (SSH) phosphatases and LIM kinases (LIMK) regulate actin dynamics via a reversible phosphorylation (inactivation) of serine 3 in actin-depolymerizing factor (ADF) and cofilin. Here we demonstrate that a multi-protein complex consisting of SSH-1L, LIMK1, actin, and the scaffolding protein, 14-3-3zeta, is involved, along with the kinase, PAK4, in the regulation of ADF/cofilin activity. Endogenous LIMK1 and SSH-1L interact in vitro and co-localize in vivo, and this interaction results in dephosphorylation and downregulation of LIMK1 activity. We also show that the phosphatase activity of purified SSH-1L is F-actin dependent and is negatively regulated via phosphorylation by PAK4. 14-3-3zeta binds to phosphorylated slingshot, decreases the amount of slingshot that co-sediments with F-actin, but does not alter slingshot activity. Here we define a novel ADF/cofilin phosphoregulatory complex and suggest a new mechanism for the regulation of ADF/cofilin activity in mediating changes to the actin cytoskeleton.  相似文献   

2.
Reorganization of the actin cytoskeleton in response to growth factor signaling, such as transforming growth factor beta (TGF-beta), controls cell adhesion, motility, and growth of diverse cell types. In Swiss3T3 fibroblasts, a widely used model for studies of actin reorganization, TGF-beta1 induced rapid actin polymerization into stress fibers and concomitantly activated RhoA and RhoB small GTPases. Consequently, dominant-negative RhoA and RhoB mutants blocked TGF-beta1-induced actin reorganization. Because Rho GTPases are known to regulate the activity of LIM-kinases (LIMK), we found that TGF-beta1 induced LIMK2 phosphorylation with similar kinetics to Rho activation. Cofilin and LIMK2 co-precipitated and cofilin became phosphorylated in response to TGF-beta1, whereas RNA interference against LIMK2 blocked formation of new stress fibers by TGF-beta1. Because the kinase ROCK1 links Rho GTPases to LIMK2, we found that inhibiting ROCK1 activity blocked completely TGF-beta1-induced LIMK2/cofilin phosphorylation and downstream stress fiber formation. We then tested whether the canonical TGF-beta receptor/Smad pathway mediates regulation of the above effectors and actin reorganization. Adenoviruses expressing constitutively activated TGF-beta type I receptor led to robust actin reorganization and Rho activation, whereas the constitutively activated TGF-beta type I receptor with mutated Smad docking sites (L45 loop) did not affect either actin organization or Rho activity. In line with this, ectopic expression of the inhibitory Smad7 inhibited TGF-beta1-induced Rho activation and cytoskeletal reorganization. Our data define a novel pathway emanating from the TGF-beta type I receptor and leading to regulation of actin assembly, via the kinase LIMK2.  相似文献   

3.
Recent data have shown that the BRAF gene is mutated at a high frequency in human malignancies. We have analyzed the migratory characteristics of B-raf(-/-) mouse embryonic fibroblasts (MEFs) and compared these with the organization of the actin cytoskeleton and the activity of signaling pathways that are known to influence this organization. Disruption of B-raf significantly reduced the levels of phospho-ERK1/2 and, surprisingly, induced an approximately 1.5-fold increase in cell migration. Consistent with these findings, the high level of actin stress fibers normally present in MEFs was considerably reduced following disruption of B-raf, and the F-actin content of B-raf(-/-) cells was less than half that of B-raf(+/+) cells. Phosphorylation of the myosin light chain on Thr18/Ser19 residues was not reduced in B-raf(-/-) cells. Rather, reduced ROCKII expression and attenuated phosphorylation of ADF/cofilin on serine 3 occurred. Normal stress fiber and phosphocofilin levels were restored by the expression of human B-Raf and catalytically active MEK and by the overexpression of LIM kinase (LIMK). These results have important implications for the role of the B-Raf/ERK signaling pathway in regulating cell motility in normal and malignant cells. They suggest that B-Raf is involved in invasiveness by regulating the proper assembly of actin stress fibers and contractility through a ROCKII/LIMK/cofilin signaling pathway.  相似文献   

4.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through cofilin phosphorylation downstream of distinct Rho family GTPases. Pak1 and ROCK, respectively, activate LIMK1 and LIMK2 downstream of Rac and Rho; however, an effector protein kinase for LIMKs downstream of Cdc42 remains to be defined. We now report evidence that LIMK1 and LIMK2 activities toward cofilin phosphorylation are stimulated in cells by the co-expression of myotonic dystrophy kinase-related Cdc42-binding kinase alpha (MRCKalpha), an effector protein kinase of Cdc42. In vitro, MRCKalpha phosphorylated the protein kinase domain of LIM kinases, and the site in LIMK2 phosphorylated by MRCKalpha proved to be threonine 505 within the activation segment. Expression of MRCKalpha induced phosphorylation of actin depolymerizing factor (ADF)/cofilin in cells, whereas MRCKalpha-induced ADF/cofilin phosphorylation was inhibited by the co-expression with the protein kinase-deficient form of LIM kinases. These results indicate that MRCKalpha phosphorylates and activates LIM kinases downstream of Cdc42, which in turn regulates the actin cytoskeletal reorganization through the phosphorylation and inactivation of ADF/cofilin.  相似文献   

5.
The members of the LIM kinase (LIMK) family, which include LIMK 1 and 2, are serine protein kinases involved in the regulation of actin polymerisation and microtubule disassembly. Their activity is regulated by phosphorylation of a threonine residue within the activation loop of the kinase by p21-activated kinases 1 and 4 and by Rho kinase. LIMKs phosphorylate and inactivate the actin depolymerising factors ADF/cofilin resulting in net increase in the cellular filamentous actin. Hsp90 regulates the levels of the LIM kinase proteins by promoting their homo-dimerisation and trans-phosphorylation. Rnf6 is an E3 ubiquitin ligase responsible for LIMK degradation in neurons. The activity of LIMK1 is also required for microtubule disassembly in endothelial cells. While LIMK1 localizes mainly at focal adhesions, LIMK2 is found in cytoplasmic punctae, suggesting that they may have different cellular functions. LIMK1 was shown to be involved in cancer metastasis, while LIMK2 activation promotes cells cycle progression.  相似文献   

6.
Stromal cell-derived factor 1 alpha (SDF-1alpha), the ligand for G-protein-coupled receptor CXCR4, is a chemotactic factor for T lymphocytes. LIM kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing and -severing protein, at Ser-3 and regulates actin reorganization. We investigated the role of cofilin phosphorylation by LIMK1 in SDF-1alpha-induced chemotaxis of T lymphocytes. SDF-1alpha significantly induced the activation of LIMK1 in Jurkat human leukemic T cells and peripheral blood lymphocytes. SDF-1alpha also induced cofilin phosphorylation, actin reorganization, and activation of small GTPases, Rho, Rac, and Cdc42, in Jurkat cells. Pretreatment with pertussis toxin inhibited SDF-1alpha-induced LIMK1 activation, thus indicating that Gi protein is involved in LIMK1 activation. Expression of dominant negative Rac (DN-Rac), but not DN-Rho or DN-Cdc42, blocked SDF-1alpha-induced activation of LIMK1, which means that SDF-1alpha-induced LIMK1 activation is mediated by Rac but not by Rho or Cdc42. We used a cell-permeable peptide (S3 peptide) that contains the phosphorylation site (Ser-3) of cofilin to inhibit the cellular function of LIMK1. S3 peptide inhibited the kinase activity of LIMK1 in vitro. Treatment of Jurkat cells with S3 peptide inhibited the SDF-1alpha-induced cofilin phosphorylation, actin reorganization, and chemotactic response of Jurkat cells. These results suggest that the phosphorylation of cofilin by LIMK1 plays a critical role in the SDF-1alpha-induced chemotactic response of T lymphocytes.  相似文献   

7.
Role of LIM kinases in normal and psoriatic human epidermis   总被引:4,自引:0,他引:4       下载免费PDF全文
We present evidence that LIM kinases can control cell adhesion and compaction in human epidermis. LIMK2 is expressed in the epidermal basal layer and signals downstream of the GTPase Rac1 to promote extracellular matrix adhesion and inhibit terminal differentiation. Conversely, LIMK1 is expressed in the upper granular layers and phosphorylates and inhibits cofilin. Expression of LIMK1 is lost in psoriatic lesions and other skin disorders characterized by lack of cell compaction in the differentiating cell layers. In psoriatic lesions down-regulation of LIMK1 correlates with up-regulation of Myc. Expression of constitutively active cofilin or Myc in reconstituted human epidermis blocks cell compaction. Overexpression of LIMK1 leads to down-regulation of Myc, whereas inhibition of Rho kinase, an upstream activator of LIMK1, stimulates Myc expression. Inhibition of Myc by LIMK1 is via inhibition of Stat3 phosphorylation, because constitutively active cofilin or inhibition of Rho kinase results in Stat3 phosphorylation and increased Myc levels, whereas dominant negative Stat3 abolishes the effect. In conclusion, we have uncovered a novel antagonistic relationship between the LIMK1/phosphocofilin and Myc/Stat3 pathways in the differentiating layers of human epidermis and propose that down-regulation of LIMK1 contributes to one of the pathological features of psoriatic epidermal lesions.  相似文献   

8.
Dynamic reorganization of the actin cytoskeleton at the leading edge is required for directed cell migration. Cofilin, a small actin-binding protein with F-actin severing activities, is a key enzyme initiating such actin remodeling processes. Cofilin activity is tightly regulated by phosphorylation and dephosphorylation events that are mediated by LIM kinase (LIMK) and the phosphatase slingshot (SSH), respectively. Protein kinase D (PKD) is a serine/threonine kinase that inhibits actin-driven directed cell migration by phosphorylation and inactivation of SSH. Here, we show that PKD can also regulate LIMK through direct phosphorylation and activation of its upstream kinase p21-activated kinase 4 (PAK4). Therefore, active PKD increases the net amount of phosphorylated inactive cofilin in cells through both pathways. The regulation of cofilin activity at multiple levels may explain the inhibitory effects of PKD on barbed end formation as well as on directed cell migration.  相似文献   

9.
LIM-kinase 1 (LIMK1) and LIM-kinase 2 (LIMK2) regulate actin cytoskeletal reorganization via cofilin phosphorylation downstream of distinct Rho family GTPases. We report our findings that ROCK, a downstream protein kinase of Rho, specifically activates LIMK2 but not LIMK1 downstream of RhoA. LIMK1 and LIMK2 activities toward cofilin phosphorylation were stimulated by co-expression with the active form of ROCK (ROCK-Delta3), whereas full-length ROCK selectively activates LIMK2 but not LIMK1. Activation of LIMK2 by RhoA was inhibited by Y-27632, a specific inhibitor of ROCK, but Rac1-mediated activation of LIMK1 was not. ROCK directly phosphorylated the threonine 505 residue within the activation segment of LIMK2 and markedly stimulated LIMK2 activity. A LIMK2 mutant with replacement of threonine 505 by valine abolished LIMK2 activities for cofilin phosphorylation and actin cytoskeletal changes, whereas replacement by glutamate enhanced the protein kinase activity and stress fiber formation by LIMK2. These results indicate that ROCK directly phosphorylates threonine 505 and activates LIMK2 downstream of RhoA and that this phosphorylation is essential for LIMK2 to induce actin cytoskeletal reorganization. Together with the finding that LIMK1 is regulated by Pak1, LIMK1 and LIMK2 are regulated by different protein kinases downstream of distinct Rho family GTPases.  相似文献   

10.
Accumulating evidence suggests that p21(Cip1) located in the cytoplasm might play a role in promoting transformation and tumor progression. Here we show that oncogenic H-RasV12 contributes to the loss of actin stress fibers by inducing cytoplasmic localization of p21(Cip1), which uncouples Rho-GTP from stress fiber formation by inhibiting Rho kinase (ROCK). Concomitant with the loss of stress fibers in Ras-transformed cells, there is a decrease in the phosphorylation level of cofilin, which is indicative of a compromised ROCK/LIMK/cofilin pathway. Inhibition of MEK in Ras-transformed NIH3T3 results in restoration of actin stress fibers accompanied by a loss of cytoplasmic p21(Cip1), and increased phosphorylation of cofilin. Ectopic expression of cytoplasmic but not nuclear p21(Cip1) in Ras-transformed cells was effective in preventing stress fibers from being restored upon MEK inhibition and inhibited phosphorylation of cofilin. p21(Cip1) was also found to form a complex with ROCK in Ras-transformed cells in vivo. Furthermore, inhibition of the PI 3-kinase pathway resulted in loss of p21(Cip1) expression accompanied by restoration of phosphocofilin, which was not accompanied by stress fiber formation. These results suggest that restoration of cofilin phosphorylation in Ras-transformed cells is necessary but not sufficient for stress fiber formation. Our findings define a novel mechanism for coupling cytoplasmic p21(Cip1) to the control of actin polymerization by compromising the Rho/ROCK/LIMK/cofilin pathway by oncogenic Ras. These studies suggest that localization of p21(Cip1) to the cytoplasm in transformed cells contributes to pathways that favor not only cell proliferation, but also cell motility thereby contributing to invasion and metastasis.  相似文献   

11.
LIM-kinase 1 (LIMK1) phosphorylates cofilin, an actin-depolymerizing factor, and regulates actin cytoskeletal reorganization. LIMK1 is activated by the small GTPase Rho and its downstream protein kinase ROCK. We now report the site of phosphorylation of LIMK1 by ROCK. In vitro kinase reaction revealed that the active forms of ROCK phosphorylated LIMK1 on the threonine residue and markedly increased its cofilin-phosphorylating activity. A LIMK1 mutant (T508A) with replacement of Thr-508 within the activation loop of the kinase domain by alanine was neither phosphorylated nor activated by ROCK. Replacement of Thr-508 by serine changed the ROCK-catalyzed phosphorylation residue from threonine to serine. A LIMK1 mutant with replacement of Thr-508 by two glutamates increased the kinase activity about 2-fold but was not further activated by ROCK. In addition, wild-type LIMK1, but not its T508A mutant, was activated by co-expression with ROCK in cultured cells. These results suggest that ROCK activates LIMK1 in vitro and in vivo by phosphorylation at Thr-508. Together with the recent finding that PAK1, a downstream effector of Rac, also activates LIMK1 by phosphorylation at Thr-508, these results suggest that activation of LIMK1 is one of the common targets for Rho and Rac to reorganize the actin cytoskeleton.  相似文献   

12.
Qiu  Y.  Chen  W. Y.  Wang  Z. Y.  Liu  F.  Wei  M.  Ma  C.  Huang  Y. G. 《Neurochemical research》2016,41(9):2457-2469

Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity.

  相似文献   

13.
Hepatocyte growth factor (HGF) is associated with tumour progression and increases the invasiveness of prostate carcinoma cells. Cell migration and invasion requires reorganisation of the actin cytoskeleton; processes mediated by the Rho family GTPases. p21 activated kinase 4 (PAK4), an effector of the Rho family protein Cdc42, is activated downstream of HGF. We report here the novel finding that in prostate cancer cells PAK4 binds to and phosphorylates LIM kinase 1 (LIMK1) in an HGF-dependent manner. We show for the first time that variations in the level of PAK4 expression change the level of cofilin phosphorylation in cells, a change we correlate with LIMK1 activity, cell morphology and migratory behaviour. We identify for the first time a direct and localised interaction between PAK4 and LIMK1 within cells using FRET: FLIM. Moreover we show here that HGF mediates this interaction which is concentrated in small foci at the cell periphery. PAK4 and LIMK1 act synergistically to increase cell migration speed, whilst a reduction in PAK4 expression decreases cell speed. It is well established that unphosphorylated (active) cofilin is a required to drive cell migration. Our results support a model whereby HGF-stimulated cell migration also requires a cofilin phosphorylation step that is mediated by PAK4.  相似文献   

14.
Cofilin and its closely related protein, actin-depolymerizing factor (ADF), are key regulators of actin cytoskeleton dynamics that have been implicated in growth cone motility and neurite extension. Cofilin/ADF are inactivated by LIM kinase (LIMK)-catalyzed phosphorylation and reactivated by Slingshot (SSH)-catalyzed dephosphorylation. Here we examined the roles of cofilin/ADF, LIMKs (LIMK1 and LIMK2), and SSHs (SSH1 and SSH2) in nerve growth factor (NGF)-induced neurite extension. Knockdown of cofilin/ADF by RNA interference almost completely inhibited NGF-induced neurite extension from PC12 cells, and double knockdown of SSH1/SSH2 significantly suppressed both NGF-induced cofilin/ADF dephosphorylation and neurite extension from PC12 cells, thus indicating that cofilin/ADF and their activating phosphatases SSH1/SSH2 are critical for neurite extension. Interestingly, NGF stimulated the activities of both LIMK1 and LIMK2 in PC12 cells, and suppression of LIMK1/LIMK2 expression or activity significantly reduced NGF-induced neurite extension from PC12 cells or chick dorsal root ganglion (DRG) neurons. Inhibition of LIMK1/LIMK2 activity reduced actin filament assembly in the peripheral region of the growth cone of chick DRG neurons. These results suggest that proper regulation of cofilin/ADF activities through control of phosphorylation by LIMKs and SSHs is critical for neurite extension and that LIMKs regulate actin filament assembly at the tip of the growth cone.  相似文献   

15.
16.
Microtubule (MT) destabilization promotes the formation of actin stress fibers and enhances the contractility of cells; however, the mechanism involved in the coordinated regulation of MTs and the actin cytoskeleton is poorly understood. LIM kinase 1 (LIMK1) regulates actin polymerization by phosphorylating the actin depolymerization factor, cofilin. Here we report that LIMK1 is also involved in the MT destabilization. In endothelial cells endogenous LIMK1 co-localizes with MTs and forms a complex with tubulin via the PDZ domain. MT destabilization induced by thrombin or nocodazole resulted in a decrease of LIMK1 colocalization with MTs. Overexpression of wild type LIMK1 resulted in MT destabilization, whereas the kinase-dead mutant of LIMK1 (KD) did not affect MT stability. Importantly, down-regulation of endogenous LIMK1 by small interference RNA resulted in abrogation of the thrombin-induced MTs destabilization and the inhibition of thrombin-induced actin polymerization. Expression of Rho kinase 2, which phosphorylates and activates LIMK1, dramatically decreases the interaction of LIMK1 with tubulin but increases its interaction with actin. Interestingly, expression of KD-LIMK1 or small interference RNA-LIMK1 prevents thrombin-induced microtubule destabilization and F-actin formation, suggesting that LIMK1 activity is required for thrombin-induced modulation of microtubule destabilization and actin polymerization. Our findings indicate that LIMK1 may coordinate microtubules and actin cytoskeleton.  相似文献   

17.
The rapid turnover of actin filaments and the tertiary meshwork formation are regulated by a variety of actin-binding proteins. Protein phosphorylation of cofilin, an actin-binding protein that depolymerizes actin filaments, suppresses its function. Thus, cofilin is a terminal effector of signaling cascades that evokes actin cytoskeletal rearrangement. When wild-type LIMK2 and kinase-dead LIMK2 (LIMK2/KD) were respectively expressed in cells, LIMK2, but not LIMK2/KD, phosphorylated cofilin and induced formation of stress fibers and focal complexes. LIMK2 activity toward cofilin phosphorylation was stimulated by coexpression of activated Rho and Cdc42, but not Rac. Importantly, expression of activated Rho and Cdc42, respectively, induced stress fibers and filopodia, whereas both Rho- induced stress fibers and Cdc42-induced filopodia were abrogated by the coexpression of LIMK2/KD. In contrast, the coexpression of LIMK2/KD with the activated Rac did not affect Rac-induced lamellipodia formation. These results indicate that LIMK2 plays a crucial role both in Rho- and Cdc42-induced actin cytoskeletal reorganization, at least in part by inhibiting the functions of cofilin. Together with recent findings that LIMK1 participates in Rac-induced lamellipodia formation, LIMK1 and LIMK2 function under control of distinct Rho subfamily GTPases and are essential regulators in the Rho subfamilies-induced actin cytoskeletal reorganization.  相似文献   

18.
The actin cytoskeleton controls multiple cellular functions, including cell morphology, movement, and growth. Accumulating evidence indicates that oncogenic activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) pathway is accompanied by actin cytoskeletal reorganization. However, the signaling events contributing to actin cytoskeleton remodeling mediated by aberrant ERK1/2 activation are largely unknown. Mutant B-RAF is found in a variety of cancers, including melanoma, and it enhances activation of the MEK/ERK1/2 pathway. We show that targeted knockdown of B-RAF with small interfering RNA or pharmacological inhibition of MEK increased actin stress fiber formation and stabilized focal adhesion dynamics in human melanoma cells. These effects were due to stimulation of the Rho/Rho kinase (ROCK)/LIM kinase-2 signaling pathway, cumulating in the inactivation of the actin depolymerizing/severing protein cofilin. The expression of Rnd3, a Rho antagonist, was attenuated after B-RAF knockdown or MEK inhibition, but it was enhanced in melanocytes expressing active B-RAF. Constitutive expression of Rnd3 suppressed the actin cytoskeletal and focal adhesion effects mediated by B-RAF knockdown. Depletion of Rnd3 elevated cofilin phosphorylation and stress fiber formation and reduced cell invasion. Together, our results identify Rnd3 as a regulator of cross talk between the RAF/MEK/ERK and Rho/ROCK signaling pathways, and a key contributor to oncogene-mediated reorganization of the actin cytoskeleton and focal adhesions.  相似文献   

19.
The regulation and maintenance of the paracellular transport in renal tubular epithelia is vital for kidney functions. Combination of the immunosuppressant drugs cyclosporine A (CsA) and sirolimus (SRL) exerts powerful immunosuppression, but also causes nephrotoxicity. We have previously shown that CsA and SRL elevate transepithelial resistance (TER) in kidney tubular cells partly through MEK/ERK1/2. In this work we examined the hypothesis that the RhoA pathway may also be mediating effects of CsA and SRL. We show that CsA and the CsA/SRL combination activated RhoA, induced cofilin phosphorylation and promoted stress fiber generation. The Rho kinase (ROK) inhibitor, Y27632, prevented CsA and CsA/SRL-induced cofilin phosphorylation and actin remodelling, reduced the TER increase and prevented the rise in claudin-7 levels caused by the drugs. Expression of the exchange factor GEF-H1/lfc was elevated in cells treated with CsA and CsA/SRL. GEF-H1 silencing inhibited RhoA activation by ≈50%, and potently reduced cofilin phosphorylation and stress fiber formation induced by CsA and CsA/SRL. However, GEF-H1 downregulation did not prevent the TER change. Thus the Rho/Rho kinase pathway was involved in mediating CsA and CsA/SRL-induced cytoskeleton rearrangement and TER changes via claudin-7 expression. Our data however point to differential regulation of Rho activation involved in central cytoskeleton remodelling, that is GEF-H1-dependent and junctional permeability that does not require GEF-H1.  相似文献   

20.
The polarity protein Par-3 plays critical roles in axon specification and the establishment of epithelial apico-basal polarity. Par-3 associates with Par-6 and atypical protein kinase C and is required for the proper assembly of tight junctions, but the molecular basis for its functions is poorly understood. We now report that depletion of Par-3 elevates the phosphorylated pool of cofilin, a key regulator of actin dynamics. Expression of a nonphosphorylatable mutant of cofilin partially rescues tight junction assembly in cells lacking Par-3, as does the depletion of LIM kinase 2 (LIMK2), an upstream kinase for cofilin. Par-3 binds to LIMK2 but not to the related kinase LIMK1. Par-3 inhibits LIMK2 activity in vitro, and overexpressed Par-3 suppresses cofilin phosphorylation that is induced by lysophosphatidic acid. Our findings identify LIMK2 as a novel target of Par-3 and uncover a molecular mechanism by which Par-3 could regulate actin dynamics during cell polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号