首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of our previous work indicated that cell-mediated immune response, of importance in protection against Treponema pallidum, is distinctly inhibited at certain periods of syphilitic infection. Considering that cytokines, produced by Th1 lymphocytes, take part in this response and that their secretion may be regulated by cytokines of Th2 lymphocytes, we examined if, and in which stages of syphilis, such a regulation may exist. In this study we have examined the ability of cells to produce IL-2, IFN and TNF (Th1 or Th1 like cytokines) as well as IL-6 and IL-10 (Th2 or Th2 like cytokines). It was found that cells of syphilitic patients were able to produce IL-2, IFN, TNF, IL-10 and weakly IL-6 already in primary seronegative syphilis. At the same stage of syphilis, but seropositive, ability of Th1 lymphocytes to produce cytokines reached the highest values, whereas the cells producing IL-10 lost this ability. The cells producing IL-6 and MIF had the highest ability in secondary early syphilis. In this stage of syphilis again slightly increased the ability of cells to secrete IL-10, which reached the highest value in early latent syphilis. The growing ability to produce IL-6 and IL-10 was accompanied with a diminished production of IL-2, IFN and TNF nearly in all stages of syphilis. Only MIF, in contrast to other cytokines, was produced in late syphilis without distinct changes. The greatest suppression of Th1 lymphocytes to produce cytokines and cells to secretion of MIF was found in early latent syphilis when the level of IL-10 in cell culture supernates was the highest. High ability of Th2 lymphocytes to cytokines secretion in late syphilis and low ability of Th1 ones, which are very important for cell-mediated immune response, may be the reason for facilitating T. pallidum multiplication and development of latent stages of disease despite presence of immunologically competent cells.  相似文献   

2.
3.
The cytokine production potential of immunocompetent cells from the blood of stomach adenocarcinoma patients was analyzed after the pretreatment of cells with the HLDF differentiation factor with subsequent exposure to polyclonal activators (HLDF+PA). IL-1β, IL-1Ra, TNFα, IL-2, IL-6, IL-8, IL-10, IL-17, IL-18, IL-18BPa, IFNγ, G-CSF, and GM-CSF were quantified in the supernatants after precipitation of the cells. Specific effects of HLDF+PA were manifested as an increase in the production of IL-8, IL-17, and GM-CSF due to suppression of Th1-dependent immune reactions in a Th17-mediated mechanism that is a part of a broader functional antagonism of Th1 and Th17 lymphocyte subpopulations.  相似文献   

4.
Interleukin-18 (IL-18) mRNA is expressed in islets of NOD mice during the early stages of insulitis and IL-18 has therefore been implicated as a contributing factor in immune-mediated beta-cell destruction. However, a recent study failed to show any effect of human IL-18 on the function of isolated rat islets. Since species differences have been shown between human and murine IL-18, the aims of this study were to investigate 1) if species homologous IL-18 alone or following IL-12 pre-exposure affected rat islet function, 2) if IL-18 dose-dependently modulated IL-1 beta or interferon-gamma (IFN-gamma) + tumor necrosis factor-alpha (TNF-alpha) actions on islet function, and 3) if IL-18 and IL-18 receptor (IL-18R) were expressed in rat islet beta-cells. Insulin release and nitric oxide (NO) production from isolated rat islets were measured after incubation with or without cytokines. RT-PCR was used to quantitate mRNA expression of IL-18 and the IL-18R signaling chain (IL-18R beta). There were no significant effects of 0.625-10 nM recombinant murine (rm) IL-18 alone on accumulated or glucose-challenged insulin release or NO production after 24 hours. Fifteen pg/ml of recombinant human (rh) IL-1 beta as well as 200 U/ml recombinant rat (rr) IFN-gamma + 250 U/ml rhTNF-alpha significantly increased islet NO production and inhibited both accumulated and glucose-challenged islet insulin release. However, rmIL-18 failed to modulate these effects of IL-1 beta or IFN-gamma + TNF-alpha. Although IL-12 induces IL-18R expression in Th1 and B lymphocytes, 24-hours rmIL-12 preincubation neither sensitized islets to effects of 10 nM of rm or rrIL-18 alone nor primed the islets to IL-1 beta actions on insulin release and NO production. IL-18R beta mRNA, which was expressed in human peripheral blood mononuclear cells (PBMC), was not expressed in rat insulinoma (RIN) cells or in isolated rat islets, even after exposure to IL-1 beta and/or IFN-gamma + TNF-alpha or IL-12. IL-18 mRNA was constitutively expressed in RIN cells, in FACS-purified rat beta-cells and in intact rat and mouse islets, and was up-regulated by IFN-gamma in an interferon regulatory factor-1- IRF-1) and NO - independent manner. However, IL-18 protein was undetectable in lysates and supernates of RIN cells by ECL, Western blotting and immunoprecipitation. In conclusion, we show for the first time that IL-18 but not IL-18R is expressed in rodent islet beta-cells. The physiological importance and pathological role of IL-18 originating from islet beta-cells deserve further investigation.  相似文献   

5.
Macrophages are important effector cells in cell-mediated immunity against intracellular infection. Among cytokines that macrophages are able to release are IL-12 and TNF alpha. IL-12 is a critical linker between the innate and adaptive cell-mediated immunity, capable of Th1 differentiation and IFN gamma release by T and NK cells. IFN gamma is critically required for the activation of macrophage bactericidal activities. Recently emerging evidence suggests that macrophages are able to release not only IL-12 and TNF alpha but also IFN gamma. However, the mechanisms that control the release of each of these type 1 cytokines in macrophages appear different. While macrophages release TNF alpha in an indiscriminate and IL-12-independent way, the release of IL-12, particularly bioactive IL-12 p70, and IFN gamma is under tight control. We are just beginning to understand what controls the release of IL-12 p70, a question of fundamental importance to understanding the mechanisms underlying the initiation of cell-mediated immunity. Our recent findings have shed more insights into the regulatory mechanisms of macrophage IFN gamma responses. It has become evident that IL-12 is required not only for Th1 differentiation but also for IFN gamma responses by both T cells and macrophages during intracellular infection. In this overview, we have discussed about the current understanding of the regulation of macrophage type 1 cytokine responses during intracellular infection, based upon the recent findings from us and others.  相似文献   

6.
A well defined model of T cell-mediated hypersensitivity-type granulomatous inflammation induced by Schistosoma mansoni eggs was used to assess the role of IL-4 and IFN-gamma in granuloma development. Synchronized pulmonary granulomas were induced and isolated from S. mansoni-infected mice during vigorous (8 wk) and modulated (20 wk) stages of the disease. The sequential production of IL-4 and IFN was determined and related to temporal changes in granuloma macrophage production of IL-1, TNF, and superoxide anion (O2-). During the vigorous stage, IL-4 was produced on days 1 and 2 of granuloma formation, whereas IFN was released in greatest amounts on days 4 to 8. The peak of IL-4 occurred in a window between the peak of IL-1 (1 day) and maximal TNF production (8 to 16 days). Maximal O2- release tended to parallel IFN production. During the modulated stage when the inflammatory response is attenuated, IL-4 production was dramatically reduced as were levels of IL-1 and TNF, but IFN production persisted and maximum O2(-)-producing capacity was only delayed in onset. mAb specific for IL-4 and IFN were used to examine the effect of in vivo depletion of these cytokines on granuloma development. Administration of a single 1.0-mg dose of anti-IL-4 antibodies to mice with synchronously developing granulomas dramatically reduced granuloma size (40 to 50% suppression of area) during an 8-day study period, whereas antibodies to IFN had no effect on size. However, the latter treatment reduced giant cell formation. Our results indicate that granuloma development involves an orchestrated production of cytokines possibly resulting from sequential participation of different Th cell populations. Moreover, IL-4 is a pivotal cytokine in anamnestic cellular recruitment and subject to endogenous regulation.  相似文献   

7.
8.
Interleukin-10 (IL-10), also known as cytokine synthesis inhibitory factor, is capable of inhibiting synthesis of pro-inflammatory cytokines like IFNγ, IL-2, IL-3, TNFα and GM-CSF made by cells such as macrophages and T helper Type 1 cells. We observed that normal human serum, derived from a healthy individual but containing large amounts of IL-10, inhibited cytotoxic activity and interfered with granzyme B release from alloreactive cytotoxic T cell (CTL) clones in vitro, but did not affect perforin release. The addition of normal human serum containing high levels of anti-IL-10 IgG neutralized the inhibitory effects of IL-10 serum. Moreover, we have identified that cytotoxic activity and granzyme B release from an Epstein-Barr virus (EBV)-specific CTL clone was similarly inhibited in the presence of IL-10 serum, while perforin release was unaffected. Anti-IL-10 IgG serum also appeared to neutralize the inhibitory effect of IL-10 serum on an EBV-specific CTL clone.  相似文献   

9.
10.
To evaluate the effect of exogenous nitric oxide (NO) and endogenous NO on the production of prostacyclin (PGI(2)) by cultured human pulmonary artery smooth muscle cells (HPASMC) treated with lipopolysaccharide (LPS), interleukin-1(beta)(IL-1(beta)), tumor necrosis factor alpha (TNF(alpha)) or interferon gamma (IFN(gamma)), HPASMC were treated with LPS and cytokines together with or without sodium nitroprusside (SNP), NO donor, N(G)-monomethyl-L-arginine (L-NMMA), NO synthetase inhibitor, and methylene blue (MeB), an inhibitor of the soluble guanylate cyclase. After incubation for 24 h, the postculture media were collected for the assay of nitrite by chemiluminescence method and the assay of PGI(2)by radioimmunoassay. The incubation of HPASMC with various concentrations of LPS, IL-1(beta)or TNF(alpha)for 24 h caused a significant increase in nitrite release and PGI(2)production. However, IFN(gamma)slightly increased the release of nitrite and had little effect on PGI(2)production. Although the incubation of these cells for 24 h with SNP did not cause a significant increase in PGI(2)production, the incubation of HPASMC with SNP and 10 microg/ml LPS, or with SNP and 100 U/ml IL-1(beta)further increase PGI(2)production and this enhancement was closely related to the concentration of SNP. However, stimulatory effect of SNP on PGI(2)production was not found in TNF(alpha)- and IFN(gamma)- treated HPASMC. Addition of L-NMMA to a medium containing LPS or IL-1(beta)reduced nitrite release and attenuated the stimulatory effect of those agents on PGI(2)production. MeB significantly suppressed the production of PGI(2)by HPASMC treated with or without LPS or IL-1(beta). The addition of SNP partly reversed the inhibitory effect of MeB on PGI(2)production by HPASMC. These experimental results suggest that NO might stimulate PGI(2)production by HPASMC. Exogenous NO together with endogenous NO induced by LPS or cytokines from smooth muscle cells might synergetically enhance PGI(2)production by these cells, possibly in clinical disorders such as sepsis and acute respiratory distress syndrome.  相似文献   

11.
Type III interferons (IFNs), also called lambda interferons (IFN-λ), comprise three isoforms, IFN-λ1 (interleukin-29 [IL-29]), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). Only limited information is available on their expression and biological functions in humans. Type I and type II IFNs protect human pancreatic islets against coxsackievirus infection, and this is important since such viruses have been proposed to play a role in the development of human type 1 diabetes. Here we investigated whether type III IFN is expressed during infection of human islet cells with coxsackievirus and if type III IFN regulates permissiveness to such infections. We show that human islets respond to a coxsackievirus serotype B3 (CVB3) infection by inducing the expression of type III IFNs. We also demonstrate that islet endocrine cells from nondiabetic individuals express the type III IFN receptor subunits IFN-λR1 and IL-10R2. Pancreatic alpha cells express both receptor subunits, while pancreatic beta cells express only IL-10R2. Type III IFN stimulation elicited a biological response in human islets as indicated by the upregulated expression of antiviral genes as well as pattern recognition receptors. We also show that type III IFN significantly reduces CVB3 replication. Our studies reveal that type III IFNs are expressed during CVB3 infection and that the expression of the type III IFN receptor by the human pancreatic islet allows this group of IFNs to regulate the islets'' permissiveness to infection. Our novel observations suggest that type III IFNs may regulate viral replication and thereby contribute to reduced tissue damage and promote islet cell survival during coxsackievirus infection.  相似文献   

12.
Inhibition of TNF/TNFR2 interactions ameliorates intestinal graft-vs-host disease (GVHD) and Th1 cytokine responses induced by transfer of B6 CD4(+) spleen cells into irradiated MHC class II disparate B6.C-H-2(bm12) (bm12) x B6 F(1) recipients. The present studies examined whether these effects of TNF are IL-12 dependent. T cell proliferative responses of B6.129S1-IL-12rb2(tm1Jm) (B6.IL-12R(-/-)) responder spleen cells were found to be comparable to those of control B6 spleen cells. TNF inhibition reduced T cell proliferation and IFN-gamma production in supernatants of MLC using either B6.IL-12R(-/-) or control B6 responder cells. GVHD induced wasting disease in recipients of B6.IL-12R(-/-) CD4(+) spleen cells that received a TNF inhibitor-encoding adenovirus (5.4 +/- 6.5% weight loss (n = 7)) was significantly reduced compared with levels of weight loss observed in recipients that had received a control adenovirus (25.7 +/- 12.2% weight loss (n = 11), p = 0.001). Furthermore, TNF inhibition was associated with a reduction in colonic GVHD scores (p = 0.039) and in the percentage of the splenic CD4(+) T cells that expressed IFN-gamma (16 vs 6%). These findings indicate that TNF promotes CD4(+) T cell alloproliferation, IFN-gamma responses, and intestinal GVHD by IL-12-independent mechanisms.  相似文献   

13.
The effect of chloroquine (CQ) on the production pattern of interferon (IFN)-gamma, interleukin (IL)-4, IL-6, and IL-10 in female C57BL6 mice infected with Plasmodium chabaudi chabaudi AS was evaluated during a period of 35 days. Our data confirm that there is a switch from a T helper cell (Th)1 to a Th2 response during malaria infection in this model. Proliferation assays showed a decreased stimulation index in infected mice that was further reduced in infected mice treated with CQ. Noninfected control mice treated with CQ showed an increase production of IFN-gamma. However, no detectable changes in IL-4, IL-6, and IL-10 production were observed in this group. CQ treatment of infected mice resulted in parasite clearance that was associated with an earlier production of IL-4, IL-6, and IL-10 when compared with nontreated infected mice. We suggest that this earlier switch to a Th2 response is a consequence of parasite killing rather than CQ interference with cytokine production.  相似文献   

14.
Interferonε (IFNε) is a unique type I IFN that has distinct functions from IFNα/β. IFNε is constitutively expressed at mucosal tissues, including the female genital mucosa, and is reported to be modulated by estrogen and seminal plasma. However, its regulation by cytokines, including TNFα, IL-1β, IL-6, IL-8, IL-17, IL-22 and IFNα, which are commonly present in the female genital mucosa, is not well documented in freshly isolated primary cervical cells from tissues. We determined the effect of these cytokines on gene expression of type I IFNs in an immortalized endocervical epithelial cell line (A2EN) and in primary cervical epithelial cells. Several pro-inflammatory cytokines were found to induce IFNε, and TNFα induced the strongest response in both cell types. Pretreatment of cells with the IκB inhibitor, which blocks the NF-κB pathway, suppressed TNFα-mediated IFNε gene induction and promoter activation. Expression of IFNα, IFNβ, and IFNε was differentially regulated in response to various cytokines. Taken together, our results show that regulation of these IFNs depends on cell type, cytokine concentration, and incubation time, highlighting the complexity of the cytokine network in the cervical epithelium.  相似文献   

15.
We have shown that the sera of lung cancer patients affect the response of ConA-stimulated normal peripheral blood mononuclear cells by decreasing the expression of IL-2Ralpha and inhibiting the release of IL-1beta and IL-2. A tendency to enhance the release of IL-6 was also observed. We conclude that an imbalance in the Th1/Th2 cytokine response, typical for cancer patients, may at least partly be related to soluble factors circulating in the patients' blood. We discuss a putative role of serum IL-10, IL-1ra, and soluble IL-2Ralpha in the effects observed.  相似文献   

16.
Fresh human alveolar macrophages and blood monocytes were stimulated with LPS and assessed for their ability to produce and release antigenic IL-1 beta. Using a sensitive and specific ELISA for IL-1 beta, monocytes released 13.3 +/- 3.1 ng/10(6) cells compared to 3.5 +/- 0.8 ng/10(6) cells for alveolar macrophages (p less than 0.01). To investigate the reason for this difference in IL-1 beta release, monocytes were compared to alveolar macrophages for total IL-1 beta production (i.e., the amount released plus that detected in the lysates). Monocytes produced a total of 19.0 +/- 3.2 ng/10(6) cells whereas alveolar macrophages produced 24.8 +/- 5.6 ng/10(6) cells (p = 0.37). The relative increase in alveolar macrophage intracellular IL-1 beta was confirmed by Western blot analysis of cell lysates. Thus, the limitation in IL-1 release from alveolar macrophages appears to be due to a decrease in the processing and release of the IL-1 beta precursor. In addition, TNF production studies demonstrated that the limitation in IL-1 release was not a generalized defect. In contrast to the IL-1 beta data, when TNF was measured from monocytes and macrophages, monocytes released only 14.6 +/- 3.4 ng/10(6), whereas macrophages released 101 +/- 30 ng/10(6) (p less than 0.02). In this same context, when fresh monocytes were allowed to mature in vitro they took on monokine production characteristics similar to alveolar macrophages. In vitro matured monocytes had a greater than 20-fold decrease in their ability to release IL-1 beta and a 6- to 8-fold increase in their ability to release TNF. Taken together, these studies suggest that IL-1 beta release is limited in mature mononuclear phagocytes as compared to fresh blood monocytes, and furthermore, that IL-1 beta regulation differs significantly from that of TNF-alpha.  相似文献   

17.
Zhang L  Yuan S  Cheng G  Guo B 《PloS one》2011,6(12):e28432
Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response.  相似文献   

18.
《Cytokine》2015,74(2):326-334
Cutaneous lupus erythematosus (CLE) is an inflammatory disease with a broad range of cutaneous manifestations that may be accompanied by systemic symptoms. The pathogenesis of CLE is complex, multifactorial and incompletely defined. Below we review the current understanding of the cytokines involved in these processes. Ultraviolet (UV) light plays a central role in the pathogenesis of CLE, triggering keratinocyte apoptosis, transport of nucleoprotein autoantigens to the keratinocyte cell surface and the release of inflammatory cytokines (including interferons (IFNs), tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6, IL-8, IL-10 and IL-17). Increased IFN, particularly type I IFN, is central to the development of CLE lesions. In CLE, type I IFN is produced in response to nuclear antigens, immune complexes and UV light. Type I IFN increases leukocyte recruitment to the skin via inflammatory cytokines, chemokines, and adhesion molecules, thereby inducing a cycle of cutaneous inflammation. Increased TNFα in CLE may also cause inflammation. However, decreasing TNFα with an anti-TNFα agent can induce CLE-like lesions. TNFα regulates B cells, increases the production of inflammatory molecules and inhibits the production of IFN-α. An increase in the inflammatory cytokines IL-1, IL-6, IL-10, IL-17 and IL-18 and a decrease in the anti-inflammatory cytokine IL-12 also act to amplify inflammation in CLE. Specific gene mutations may increase the levels of these inflammatory cytokines in some CLE patients. New drugs targeting various aspects of these cytokine pathways are being developed to treat CLE and systemic lupus erythematosus (SLE).  相似文献   

19.
Abstract Endotoxin (lipopolysaccharide, LPS) induces the production of mediators of inflammation, which exerts pathophysiological effects such as fever or shock in mammals. In the present study we have investigated the modulation of LPS by the synthetic non-active tetraacylated precursor Ia of lipid A (compound 406) in the induction of tumor necrosis factor (TNF), interleukin 1 (IL-1) and interleukin 6 (IL-6) in human peripheral blood mononuclear cells (PBMC) and in human peripheral blood monocytes (PBMo). PBMC stimulated with LPS released TNF in a concentration dependent manner. Release of biologically active TNF, IL-1 and IL-6 was first detectable 4 h after LPS stimulation. Compound 406 alone in all concentrations tested did not induce TNF, IL-1 or IL-6 release, intracellular TNF or IL-1β, or mRNA for TNF or IL-1. Added to PBMC 1 h before LPS compound 406 enhanced or suppressed TNF release and suppressed IL-1 and IL-6 release depending on the ratio of concentrations between stimulator (LPS) and modulator (compound 406). In contrast to LPS stimulation alone TNF, IL-1 and IL-6 release in presence of compound 406 was delayed and first detectable after 6 to 8 h. Compound 406 was able to suppress LPS-induced intracellular TNF and IL-1β in PBMC. Added to PBMo 1 h before LPS it totally inhibited the production of mRNA for TNF and IL-1. When added to PBMC 1 h after LPS, TNF release was suppressed in a concentration-dependent way and release of biologically active TNF, IL-1 and IL-6 could again be detected for the first time after 4 h. Compound 406 was not able to inhibit phorbol 12-myristate 13-acetate (PMA)-induced TNF and IL-1 release in PBMo which suggests that its modulating effect is LPS-specific. This study provides evidence that the modulating effect of compound 406 on the LPS induction of TNF, IL-, 1 and IL-6 could be due to competitive binding.  相似文献   

20.
The global burden of neonatal and infant mortality due to infection is staggering, particularly in resource-poor settings. Early childhood vaccination is one of the major interventions that can reduce this burden, but there are specific limitations to inducing effective immunity in early life, including impaired neonatal leukocyte production of Th1-polarizing cytokines to many stimuli. Characterizing the ontogeny of Toll-like receptor (TLR)-mediated innate immune responses in infants may shed light on susceptibility to infection in this vulnerable age group, and provide insights into TLR agonists as candidate adjuvants for improved neonatal vaccines. As little is known about the leukocyte responses of infants in resource-poor settings, we characterized production of Th1-, Th2-, and anti-inflammatory-cytokines in response to agonists of TLRs 1-9 in whole blood from 120 Gambian infants ranging from newborns (cord blood) to 12 months of age. Most of the TLR agonists induced TNFα, IL-1β, IL-6, and IL-10 in cord blood. The greatest TNFα responses were observed for TLR4, -5, and -8 agonists, the highest being the thiazoloquinoline CLO75 (TLR7/8) that also uniquely induced cord blood IFNγ production. For most agonists, TLR-mediated TNFα and IFNγ responses increased from birth to 1 month of age. TLR8 agonists also induced the greatest production of the Th1-polarizing cytokines TNFα and IFNγ throughout the first year of life, although the relative responses to the single TLR8 agonist and the combined TLR7/8 agonist changed with age. In contrast, IL-1β, IL-6, and IL-10 responses to most agonists were robust at birth and remained stable through 12 months of age. These observations provide fresh insights into the ontogeny of innate immunity in African children, and may inform development of age-specific adjuvanted vaccine formulations important for global health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号