首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cereals, starch is synthesized in endosperm cells, which have a ploidy level of three. By studying the allelic dosage of mutants affecting starch formation in maize (Zea mays L.) kernels, we determined the effect of down-regulated enzyme activity on starch accumulation and the activity of associated enzymes of carbohydrate metabolism. We found a direct relationship between the amount of starch produced in the endosperm and the gene dosage of amylose extender-1, brittle-2, shrunken1, and sugary-1 mutant alleles. Changes in starch content were found to be caused by changes in the duration as well as the rate of starch synthesis, depending on the mutant. Branching enzyme, ADP-glucose pyrophosphorylase, and sucrose synthase activities were linearly reduced in endosperm containing increasing dosages of amylose extender-1, brittle-2, and shrunken-1 alleles, respectively. De-branching enzyme activity declined only in the presence of two or three copies of sugary-1. No enzyme-dosage relationship occurred with the dull1 mutant allele. All mutants except sugary-1 displayed large increases (approximately 2- to 5-fold) in activity among various enzymes unrelated to the structural gene. This occurred in homozygous recessive genotypes, as did elevated concentrations of soluble sugars, and differed in magnitude and distribution among enzymes according to the particular mutation.  相似文献   

2.
The conversion of maize (corn) kernels to bio-ethanol is an energy-intensive process involving many stages. One step typically required is the liquefaction of the ground kernel to enable enzyme hydrolysation of the starch to glucose. The enzyme blends STARGEN? (Genencor) are capable of hydrolysing starch granules without liquefaction, reducing energy inputs and increasing efficiency. Studies were conducted on maize starch mutants amylose extender 1 (ae1), dull 1 (du1) and waxy 1 (wx1) in the inbred line Oh43 to determine whether different maize starches affected hydrolysation rates by STARGEN? 001 and STARGEN? 002. All mutants contained similar proportions of starch in the kernel but varied in the amylose to amylopectin ratio. Ground maize kernels were incubated with STARGEN? 001 and viewed using scanning electron microscopy to examine the hydrolysis action of STARGEN? 001 on the starch granules. The ae1 mutant exhibited noticeably less enzymic hydrolysis action, on the granules visualised, than wx1 and background line Oh43. Kernels were batch-fermented with STARGEN? 001 and STARGEN? 002. The ae1 mutant exhibited a 50% lower ethanol yield compared to the wx1 mutant and background line. A final study compared hydrolysation rates of STARGEN? 001 and STARGEN? 002 on purified maize starch, amylopectin and amylose. Though almost twice the amylopectin was hydrolysed using STARGEN? 002 than STARGEN? 001 in this trial, fermentations using STARGEN? 002 resulted in lower ethanol yields than fermentations using STARGEN? 001. Both STARGEN? enzyme blends were more suitable for the fermentation of high amylopectin maize starches than high amylose starches.  相似文献   

3.
Summary Five mutant lines of rice with increased amylose content in starch granules were identified among floury endosperm mutants. The amylose contents of the mutants ranged from 29.4% to 35.4% and were about twice as high as that of the normal counterpart. Starch properties of the high amylose mutants were analyzed by column chromatography, X-ray diffractometry, photopastegraphy and scanning electron microscopy. The high amylose mutants produced longer unit chains of amylopectin than those of the normal counterpart as well as an increased amount of amylose. A X-ray diffractogram of starch in the mutant was characterized by a type B pattern, while that in the normal counterpart showed a type A pattern which is typical for starches of common cereals. The temperatures at the initiation of gelatinization of the mutants were much higher than that for the normal counterpart. The endosperm cells of the mutant were loosely packed with irregular round-shaped starch granules, whereas those of the normal counterpart were densely packed with polyhedral starch granules. Judging from the results obtained, it was concluded that starch properties of the high amylose mutants of rice were similar to those of the amylose-extender (ae) mutant of maize.  相似文献   

4.
不同类型玉米发育籽粒中淀粉合成及相关酶活性比较   总被引:5,自引:0,他引:5  
以普通玉米、爆裂玉米、甜玉米和糯玉米为试材,分析和比较不同类型的玉米品种之间籽粒发育过程中淀粉合成及相关酶活性的变化。结果表明,淀粉合成速率和蔗糖合成酶(SS)、可溶性淀粉合成酶(SSS)、束缚态淀粉合成酶(GBSS)、淀粉分支酶(SBE)、去分支酶(DBE)活性都呈单峰曲线变化。30~40 DAP,普通玉米的SS活性显著高于其他3种类型;类型间平均和最大SSS活性水平的顺序为普通玉米>糯玉米>爆裂玉米>甜玉米;30~40 DAP,普通玉米GBSS活性最高,糯玉米GBSS活性最低;20~40 DAP,糯玉米SBE活性最高;甜玉米的DBE活性很低,并且在40 DAP完全丧失。淀粉合成速率与SS、SSS、GBSS和SBE活性相关程度比较高,与腺苷二磷酸葡萄糖焦磷酸化酶(AGP酶)和DBE活性相关不显著。推测AGP酶虽然为淀粉合成提供直接前体ADPG,但可能SS活性过低致使其限速作用比AGP酶的还强,AGP酶潜在的限速作用无法表现,SS成为玉米籽粒淀粉合成的限速因子。GBSS对直链淀粉积累起重要的促进作用;SSS和SBE对支链淀粉积累起重要的促进作用。  相似文献   

5.
Summary Eight dull mutants that lower the amylose content of rice endosperm as well as waxy mutant and a cultivar with common grains were crossed in a diallele manner. The amylose content of F1 and F2 seeds was determined on the basis of single grain analysis. It was concluded that the low amylose content of dull mutants is under monogenic recessive control. Alleles for low amylose content are located at five loci designated as du-1, du-2, du-3, du-4 and du-5. These loci are independent of wx locus located on chromosome 6. The five du loci have an additive effect in lowering the amylose content. Two loci, du-1 and du-4, were found to be located on chromosomes 7 and 4, respectively.  相似文献   

6.
Summary Sugary, shrunken, floury, white core, amylose extender and dull mutants induced in japonica varieties were used in this study. The results of an allelic analysis conducted in japonica background indicated that the two sugary mutants 82GF and EM5 are allelic. The two amylose extender mutants 2064 and EM16 are also allelic. The opaque mutant ESD7-3(0) and floury mutants 2047, EM17 and EM28 are allelic as well and have the flo-1 gene. The three white core mutants EM3, EM24 and EM66 were found to be non-allelic. Eleven dull mutants were investigated. Dull mutants 2057, 2083, 2091 and EM15 were found to be allelic to each other. Similarly, dull mutants 2077, 2078 and 2120 have allelic genes. Dull mutants 2035, EM12, EM47, and EM98 are non-allelic to the above loci. Dull genes in EM12, EM15, and EM98 were designated earlier as du-1, du-2 and du-4, respectively.The mutant genes were transferred to indica background by two backcrosses to IR36. Some of the mutant genes were located to respective chromosomes through trisomic analysis using primary trisomics of IR36. In this way the amylose extender gene ae was located to chromosome 2, the flo-1 was located to chromosome 5 and the flo-2 to chromosome 4. Dull genes of EM47, 2120, and 2035 were assigned to chromosomes 6, 9, and 6, respectively.  相似文献   

7.
Damaged starch characterisation by ultracentrifugation   总被引:1,自引:0,他引:1  
The relative molecular size distributions of a selection of starches (waxy maize, pea and maize) that had received differing amounts of damage from ball milling (as quantified by susceptibility to alpha-amylase) were compared using analytical ultracentrifugation. Starch samples were solubilised in 90% dimethyl sulfoxide, and relative size distributions were determined in terms of the apparent distribution of sedimentation coefficients g*(s) versus s(20,w). For comparison purposes, the sedimentation coefficients were normalised to standard conditions of density and viscosity of water at 20 degrees C, and measurements were made with a standard starch loading concentration of 8 mg/mL. The modal molecular size of the native unmilled alpha-glucans were found to be approximately 50S, 51S and 79S for the waxy maize, pea and maize amylopectin molecules, respectively, whilst the pea and maize amylose modal molecular sizes were approximately 14S and approximately 12S, respectively. As the amount of damaged starch increased, the amylopectin molecules were eventually fragmented, and several components appeared, with the smallest fractions approaching the sedimentation coefficient values of amylose. For the waxy maize starch, the 50S material (amylopectin) was gradually converted to 14S, and the degradation process included the appearance of 24S material. For the pea starch, the situation was more complicated than the waxy maize due to the presence of amylose. As the amylopectin molecules (51S) were depolymerised by damage within this starch, low-molecular-weight fragments added to the proportion of the amylose fraction (14S)--although tending towards the high-molecular-weight region of this fraction. As normal maize starch was progressively damaged, a greater number of fragments appeared to be generated compared to the other two starches. Here, the 79S amylopectin peak (native starch) was gradually converted into 61 and 46S material and eventually to 11S material with a molecular size comparable to amylose. Amylose did not appear to be degraded, implying that all the damage was focused on the amylopectin fraction in all three cases. Specific differences in the damage profiles for the pea and maize starches may reflect the effect of lipid-complexed amylose in the maize starch.  相似文献   

8.
Cereal starch production forms the basis of subsistence for much of the world's human and domesticated animal populations. Starch concentration and composition in the maize (Zea mays ssp mays) kernel are complex traits controlled by many genes. In this study, an association approach was used to evaluate six maize candidate genes involved in kernel starch biosynthesis: amylose extender1 (ae1), brittle endosperm2 (bt2), shrunken1 (sh1), sh2, sugary1, and waxy1. Major kernel composition traits, such as protein, oil, and starch concentration, were assessed as well as important starch composition quality traits, including pasting properties and amylose levels. Overall, bt2, sh1, and sh2 showed significant associations for kernel composition traits, whereas ae1 and sh2 showed significant associations for starch pasting properties. ae1 and sh1 both associated with amylose levels. Additionally, haplotype analysis of sh2 suggested this gene is involved in starch viscosity properties and amylose content. Despite starch concentration being only moderately heritable for this particular panel of diverse maize inbreds, high resolution was achieved when evaluating these starch candidate genes, and diverse alleles for breeding and further molecular analysis were identified.  相似文献   

9.
Amylose-defective mutants were selected after UV mutagenesis of Chlamydomonas reinhardtii cells. Two recessive nuclear alleles of the ST-2 gene led to the disappearance not only of amylose but also of a fraction of the amylopectin. Granule-bound starch synthase activities were markedly reduced in strains carrying either st-2-1 or st-2-2, as is the case for amylose-deficient (waxy) endosperm mutants of higher plants. The main 76-kDa protein associated with the starch granule was either missing or greatly diminished in both mutants, while st-2-1-carrying strains displayed a novel 56-kDa major protein. Methylation and nuclear magnetic resonance analysis of wild-type algal storage polysaccharide revealed a structure identical to that of higher-plant starch, while amylose-defective mutants retained a modified amylopectin fraction. We thus propose that the waxy gene product conditions not only the synthesis of amylose from endosperm storage tissue in higher-plant amyloplasts but also that of amylose and a fraction of amylopectin in all starch-accumulating plastids. The nature of the ST-2 (waxy) gene product with respect to the granule-bound starch synthase activities is discussed.  相似文献   

10.
郭尚敬  李加瑞  乔卫华  张宪省 《遗传学报》2006,33(11):1014-1019
淀粉是玉米种子的主要组成成分,它包括直链淀粉和支链淀粉。支链淀粉的合成需要淀粉合成酶、分支酶和脱支酶的共同作用,而直链淀粉的合成则是在颗粒结合型淀粉合成酶的作用下进行的。颗粒结合型淀粉合成酶基因的突变造成玉米种子的腊质(糯性)表型。与支链淀粉合成的分子机制的研究相比,目前对玉米种子中直链淀粉合成的分子机制了解相对较少。以野生型黄早4玉米自交系和突变体糯玉米为实验材料,研究了种子不同发育时期直链淀粉的积累规律。通过碘染色的方法,观察了玉米种子发育过程中淀粉积累的形态变化。定量分析表明,从授粉后10d至25d,黄早4种子中直链淀粉的含量逐渐增加,同时颗粒结合型淀粉合成酶(GBSS)的活性逐渐提高;而在糯玉米中,直链淀粉和GBSS活性均未检测到。进而,通过RT-PCR方法,从黄早4种子中分离出编码GBSSI的cDNA片段。在授粉后10d至25d的玉米胚乳中均可检测到GBSSI的表达,而在胚中直到授粉后25d才检测到该基因表达的微弱信号。在糯玉米种子中没有检测到该基因的表达。研究结果表明,在玉米种子发育过程中,GBSSI基因的表达通过控制GBSS的合成,最终控制直链淀粉的合成。研究工作为理解玉米种子中直链淀粉合成的分子机制提供了重要信息。  相似文献   

11.
The physical properties and enzymatic digestibility of acetylated starches prepared in the laboratory from high amylose (Hi-Maize™ 66% amylose; and GELOSE 50, 47% amylose), waxy (MAZACA 3401X, 3.3% amylose), and normal (22.4% amylose) maize starches provided by Starch Australasia Limited were studied. Acetylation decreased temperature at peak viscosity, while slightly increasing peak viscosity compared to the matching unmodified starch. It increased cool paste viscosity except in the case of normal starch. All the acetylated starches had lower onset temperature (To), intermediate temperature (Tp), completion temperature (Tc) and endothermic energy (ΔH) than their unmodified starches, but acetylation increased swelling power and solubility. After acetylation, the hardness of all the starch gels decreased; adhesiveness decreased and springiness increased except for waxy starch where it was the reverse; cohesiveness increased in each case. Acetylation increased the clarity of all the starches, except for waxy which showed a decrease. Acetylation increased the enzymatic digestibility compared to the unmodified starches.  相似文献   

12.
Adhesion of 19 Bifidobacterium strains to native maize, potato, oat, and barley starch granules was examined to investigate links between adhesion and substrate utilization and to determine if adhesion to starch could be exploited in probiotic food technologies. Starch adhesion was not characteristic of all the bifidobacteria tested. Adherent bacteria bound similarly to the different types of starch, and the binding capacity of the starch (number of bacteria per gram) correlated to the surface area of the granules. Highly adherent strains were able to hydrolyze the granular starches, but not all amylolytic strains were adherent, indicating that starch adhesion is not a prerequisite for efficient substrate utilization for all bifidobacteria. Adhesion was mediated by a cell surface protein(s). For the model organisms tested (Bifidobacterium adolescentis VTT E-001561 and Bifidobacterium pseudolongum ATCC 25526), adhesion appeared to be specific for alpha-1,4-linked glucose sugars, since adhesion was inhibited by maltose, maltodextrin, amylose, and soluble starch but not by trehalose, cellobiose, or lactose. In an in vitro gastric model, adhesion was inhibited both by the action of protease and at pH values of < or =3. Adhesion was not affected by bile, but the binding capacity of the starch was reduced by exposure to pancreatin. It may be possible to exploit adhesion of probiotic bifidobacteria to starch granules in microencapsulation technology and for synbiotic food applications.  相似文献   

13.
Post-Domestication Selection in the Maize Starch Pathway   总被引:1,自引:0,他引:1  
Modern crops have usually experienced domestication selection and subsequent genetic improvement (post-domestication selection). Chinese waxy maize, which originated from non-glutinous domesticated maize (Zea mays ssp. mays), provides a unique model for investigating the post-domestication selection of maize. In this study, the genetic diversity of six key genes in the starch pathway was investigated in a glutinous population that included 55 Chinese waxy accessions, and a selective bottleneck that resulted in apparent reductions in diversity in Chinese waxy maize was observed. Significant positive selection in waxy (wx) but not amylose extender1 (ae1) was detected in the glutinous population, in complete contrast to the findings in non-glutinous maize, which indicated a shift in the selection target from ae1 to wx during the improvement of Chinese waxy maize. Our results suggest that an agronomic trait can be quickly improved into a target trait with changes in the selection target among genes in a crop pathway.  相似文献   

14.
Native and high pressure-treated (water suspensions, 650 MPa) waxy maize starch, containing mainly amylopectin, and Hylon VII, rich in amylose, were studied for their ability to generate free radicals upon thermal treatment at 180–230 °C. The electron paramagnetic resonance (EPR) spectroscopy was used to characterize the nature, number and stability of radicals. Various stable and short living (stabilized by N-tert-butyl-α-phenylnitrone (PBN) spin trap) radical species were formed. It was found, that at given conditions the waxy maize starch reveals higher ability to generate radicals, than Hylon VII. The presence of water and high pressure pretreatment of starches, both resulted in the reduction of the amount of thermally generated radicals. The decrease in crystallinity of waxy maize starch and of Hylon VII, occurring upon high pressure treatment, leads to the increase of the relative amount of fast rotating component in the EPR spectrum of both types of starches.  相似文献   

15.
The importance of glucan chains that pass through both the amorphous and crystalline lamellae (tie chains) in the organization of corn starch granules was studied using heat‐moisture treatment (HMT), annealing (ANN), and iodine binding. Molecular structural analysis showed that hylon starches (HV, HVII, and HVIII) contained higher proportion of intermediate glucan chains (HVIII > HVII > HV) than normal corn (CN) starch. Wide angle X‐ray scattering revealed that on HMT, the extent of polymorphic transition in hylon starches decreased with increasing proportion of intermediate and long chains. Iodine treated hylon starches exhibited increased order in the V‐type polymorphism as evidenced by the intense peak at 20° 2θ and the strong reflection intensity at 7.5° 2θ and the extent of the change depended on the type of hylon starch. DSC results showed that the gelatinization enthalpy of CN and waxy corn starch (CW) remained unchanged after ANN. However, hylon starches showed a significant increase in enthalpy with more distinct endotherms after ANN. It can be concluded that tie chains influence the organization of crystalline lamellae in amylose extender mutant starches. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 871–885, 2014.  相似文献   

16.
The influence of amylose on starch granule structure   总被引:13,自引:0,他引:13  
Starch granules are principally composed of the two glucose polymers amylose and amylopectin. Native starch granules typically contain around 20% amylose and 80% amylopectin. However, it is possible to breed plants that produce starch with very different amylose and amylopectin contents. At present, the precise structural roles played by these two polymers are incompletely understood. In this study, small-angle X-ray scattering techniques have been applied to investigate the effect of varying amylose content on the internal structure of maize, barley and pea starch species. The results suggest that amylose disrupts the structural order within the amylopectin crystallites.  相似文献   

17.
18.
The mechanism of starch degradation by the fungus Trichoderma viride was studied in strain CBS 354.44, which utilizes glucose, starch and dextrins but is unable to assimilate maltose. It was shown that the amylolytic enzyme system is completely extracellular, equally well induced by starch, amylose or amylopectin and that it consists mainly of enzymes of the glucoamylase type which yield glucose as the main product of starch hydrolysis. Small amounts of -amylase are produced also. The enzymes produced in starch cultures degrade starch, amylose and amylopectin equally well.Enzyme synthesis in starch media takes place to a considerable extent after exhaustion of the carbon source when maximum growth has been attained.Low-molecular dextrins are degraded by extracellular enzymes of the glucoamylase type. These enzymes are produced in media containing starch or dextrins. Maltotriose is consumed for only one third leaving maltose in the culture filtrate. Maltose is hardly attacked and hardly induces any amylolytic enzyme activity. No stable -glucosidase appears to be produced.  相似文献   

19.
In order to modify the properties of native starch granules, the formation of gelatinized granular forms (GGS) from normal, waxy, and high amylose maize, as well as potato and tapioca starches was investigated by treating granules with aqueous ethanol at varying starch:water:ethanol ratios and then heating in a rotary evaporator to remove ethanol. The modified starches were characterized using bright field, polarized and electron microscopy. Short/long range molecular order and enthalpic transitions on heating were also studied using infrared spectroscopy, X-ray diffractometry and differential scanning calorimetry respectively. A diffuse birefringence pattern without Maltese cross was observed for most GGS samples. Treatment with aqueous ethanol resulted in starch-specific changes in the surface of granules, most noticeably swelling and disintegration in waxy maize, surface wrinkling in normal maize and tapioca, swelling and opening-up in potato starches, and swelling and bursting in high amylose maize. The ratio of ethanol to water at which original granular order was disrupted also varied with starch type. GGS had less short range molecular order than native granules as inferred by comparing 1047/1022 wave number ratio from infrared spectroscopy. Similarly, A- and B-type diffraction reflections were either reduced or completely lost with evolution of V-type patterns in GGS.  相似文献   

20.
Adhesion of 19 Bifidobacterium strains to native maize, potato, oat, and barley starch granules was examined to investigate links between adhesion and substrate utilization and to determine if adhesion to starch could be exploited in probiotic food technologies. Starch adhesion was not characteristic of all the bifidobacteria tested. Adherent bacteria bound similarly to the different types of starch, and the binding capacity of the starch (number of bacteria per gram) correlated to the surface area of the granules. Highly adherent strains were able to hydrolyze the granular starches, but not all amylolytic strains were adherent, indicating that starch adhesion is not a prerequisite for efficient substrate utilization for all bifidobacteria. Adhesion was mediated by a cell surface protein(s). For the model organisms tested (Bifidobacterium adolescentis VTT E-001561 and Bifidobacterium pseudolongum ATCC 25526), adhesion appeared to be specific for α-1,4-linked glucose sugars, since adhesion was inhibited by maltose, maltodextrin, amylose, and soluble starch but not by trehalose, cellobiose, or lactose. In an in vitro gastric model, adhesion was inhibited both by the action of protease and at pH values of ≤3. Adhesion was not affected by bile, but the binding capacity of the starch was reduced by exposure to pancreatin. It may be possible to exploit adhesion of probiotic bifidobacteria to starch granules in microencapsulation technology and for synbiotic food applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号