首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Prior to this paper there have been no reports of a multiple sex chromosome mechanism operative in any tick. The present paper deals with two species of Ixodidae, Amblyomma moreliae and Amblyomma limbatum that exhibit an X1X1X2X2:X1X2Y type of sex chromosome mechanism. Cells from males of both species show nine bivalents plus one sex trivalent. Eleven bivalents were observed in one female A. moreliae. The sex trivalent probably evolved through reciprocal translocation from a system that included ten autosomal bivalents and one sex univalent (the system found in most ixodid species). As a result of the translocation, there are now two X chromosomes (X1 and X2) segregating from an unaltered autosome, the neo-Y. A large X chromosome is characteristic of many ticks; in this instance the reciprocal translocation did not change appreciably its relative size.The opinions and assertions contained herein are the private ones of the author and are not to be construed as official or reflecting the views of the Navy Department or the Naval service at large.This study was begun during the tenure of a North Alantic Treaty Organization (National Science Foundation) Postdoctoral Fellowship.  相似文献   

2.
An adaptive explanation for environmental sex determination is that it promotes sexual size dimorphism when larger size benefits one sex more than the other. That is, if growth rates are determined by environment during development, then it is beneficial to match developmental environment to the sex that benefits more from larger size. However, larger size may also be a consequence of larger size at hatching or growing for a longer time, i.e., delayed age at first reproduction. Therefore, the adaptive significance of sexual size dimorphism and environmental sex determination can only be interpreted within the context of both growth and maturation. In addition, in those animals that continue to grow after maturation, sexual size dimorphism at age of first reproduction could differ from sexual size dimorphism at later ages as growth competes for energy with reproduction and maintenance. I compared growth using annuli on carapace scales in two species of box turtles (Terrapene carolina and T. ornata) that have similar patterns of environmental sex determination but, reportedly, have different patterns of sexual size dimorphism. In the populations I studied, sexual size dimorphism was in the same direction in both species; adult females were, on average, larger than adult males. This was due in part to males maturing earlier and therefore at smaller sizes than females. In spite of similar patterns of environmental sex determination, patterns of growth differed between the species. In T. carolina, males grew faster than females as juveniles but females had the larger asymptotic size. In T. ornata, males and females grew at similar rates and had similar asymptotic sizes. Sexual size dimorphism was greatest at maturation because, although males matured younger and smaller, they grew more as adults. There was, therefore, no consistent pattern of faster growth for females that may be ascribed to developmental temperature. Received: 20 March 1996 / Accepted: 10 March 1998  相似文献   

3.
This analysis investigates the ontogeny of body size dimorphism in apes. The processes that lead to adult body size dimorphism are illustrated and described. Potential covariation between ontogenetic processes and socioecological variables is evaluated. Mixed-longitudinal growth data from 395 captive individuals (representing Hylobates lar [gibbon], Hylobates syndactylus [siamang], Pongo pygmaeus [orangutan], Gorilla gorilla [gorilla], Pan paniscus [pygmy chimpanzee], and Pan troglodytes [“common” chimpanzee]) form the basis of this study. Results illustrate heterogeneity in the growth processes that produce ape dimorphism. Hylobatids show no sexual differentiation in body weight growth. Adult body size dimorphism in Pongo can be largely attributed to indeterminate male growth. Dimorphism in African apes is produced by two different ontogenetic processes. Both pygmy chimpanzees (Pan paniscus) and gorillas (Gorilla gorilla) become dimorphic primarily through bimaturism (sex differences in duration of growth). In contrast, sex differences in rate of growth account for the majority of dimorphism in common chimpanzees (Pan troglodytes). Diversity in the ontogenetic pathways that produce adult body size dimorphism may be related to multiple evolutionary causes of dimorphism. The lack of sex differences in hylobatid growth is consistent with a monogamous social organization. Adult dimorphism in Pongo can be attributed to sexual selection for indeterminate male growth. Interpretation of dimorphism in African apes is complicated because factors that influence female ontogeny have a substantial effect on the resultant adult dimorphism. Sexual selection for prolonged male growth in gorillas may also increase bimaturism relative to common chimpanzees. Variation in female growth is hypothesized to covary with foraging adaptations and with differences in female competition that result from these foraging adaptations. Variation in male growth probably corresponds to variation in level of sexual selection. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Many insect species rely on their sense of audition to find a mate, to localize prey or to escape from a predator. Cicadas are particularly known for their loud call and the conspicuous tympanal hearing system located in their abdomen. The vibration pattern of the tympanal membrane (TM) has been investigated recently revealing mechanical properties specific to species and sex. Although TM size and shape is likely to affect these patterns, the geometry of the cicada ear has never been examined per se. Focusing on three Mediterranean cicada species, namely Cicadatra atra, Cicada orni and Lyristes plebejus, we investigated the structure of TM shape variation at two levels, within and across species. Applying an elliptic Fourier analysis to the outlines of both male and female TMs, we estimated sexual dimorphism and species effects. Cicadatra atra showed a large TM compared with its small size, probably as a result of selective constraints related to the role of the TM in sound production. Sexual dimorphism seemed to be greater than interspecific variation, indicating that constraints operating on sex might be more selective than those acting on species identification. In addition, C. orni appeared to be significantly different from the two other species. This morphological peculiarity could be related to the unique vibrational pattern of its membrane. This would establish for the first time a direct link between the shape and mechanism of a hearing organ. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 922–934.  相似文献   

5.
  1. In most animals, females are larger than males. Paradoxically, sexual size dimorphism is biased towards males in most mammalian species. An accepted explanation is that sexual dimorphism in mammals evolved by intramale sexual selection. I tested this hypothesis in primates, by relating sexual size dimorphism to seven proxies of sexual selection intensity: operational sex ratio, mating system, intermale competition, group sex ratio, group size, maximum mating percentage (percentage of observed copulations involving the most successful male), and total paternity (a genetic estimate of the percentage of young sired by the most successful male).
  2. I fitted phylogenetic generalised least squares models using sexual size dimorphism as the dependent variable and each of the seven measures of intensity of sexual selection as independent variables. I conducted this comparative analysis with data from 50 extant species of primates, including Homo sapiens, Pan troglodytes, and Gorilla spp.
  3. Sexual dimorphism was positively related to the four measures of female monopolisation (operational sex ratio, mating system, intermale competition, and group sex ratio) and in some cases to group size, but was not associated with maximum mating percentage or total paternity. Additional regression analyses indicated that maximum mating percentage and total paternity were negatively associated with group size.
  4. These results are predicted by reproductive skew theory: in large groups, males can lose control of the sexual behaviour of the other members of the group or can concede reproductive opportunities to others. The results are also consistent with the evolution of sexual size dimorphism before polygyny, due to the effects of natural, rather than sexual, selection. In birds, the study of molecular paternity showed that variance in male reproductive success is much higher than expected by behaviour. In mammals, recent studies have begun to show the opposite trend, i.e. that intensity of sexual selection is lower than expected by polygyny.
  5. Results of this comparative analysis of sexual size dimorphism and sexual selection intensity in primates suggest that the use of intramale sexual selection theory to explain the evolution of polygyny and sexual dimorphism in mammals should be reviewed, and that natural selection should be considered alongside sexual selection as an evolutionary driver of sexual size dimorphism and polygyny in mammals.
  相似文献   

6.
From crossings between Mesocricetus brandti and Mesocricetus newtoni 23 hybrids were obtained which presented characters intermediate between the parents and which were completely sterile. The number of chromosomes in the hybrid animals (2n=40) is also intermediate between the parents and the karyotype presents two distinct chromosome sets corresponding to those in the two parent species. The regular presence of multivalents at diakinesis and metaphase I probably causes the non balanced disjunction of the genetic material, and thus, probably, the total sterility of the hybrids. The study of sex chromatin showed the existence of a sex dimorphism, the female presenting more nuclei with 1–2 sex chromatin bodies. The presence of 2 sex chromatin bodies of different sixes may be explained by the heteroehromatinization of a whole X chromosome and half of its homologue.Histological study showed that the male and female genital apparatus are intensively affected in hybrids and the spermatogenetic and oogenetic activity is generally stopped. This determines the total sterility of the hybrids.  相似文献   

7.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

8.
There has been very little empirical study of quantitative genetic variation in flower size in sexually dimorphic plant species, despite the frequent occurrence of flower size differences between sexual phenotypes. In this study we quantify the nature of quantitative flower size variation in females and hermaphrodites of gynodioecious Thymus vulgaris. In a field study, females had significantly smaller flowers than hermaphrodites, and the degree of flower size dimorphism varied significantly among populations. To quantify the genetic basis of flower size variation we sampled maternal progeny from 10 F0 females in three populations (across the range of variation in flower size in the field), performed controlled crosses on F1 offspring in the glasshouse and grew F2 progeny to flowering in uniform field conditions. A significant population * sex interaction was again observed, hence the degree of sexual dimorphism shows genetic variation among populations. A significant family * sex interaction was also observed, indicating that the degree of sexual dimorphism shows genetic variation among families. Females showed significantly greater variation among populations and among families than hermaphrodites. Female flower size varied significantly depending on the degree of stamen abortion, with morphologically intermediate females having flowers more similar to hermaphrodites than to other females. The frequency of female types that differ in the degree of stamen abortion varied among populations and families and mean family female flower size increased as the proportion of intermediate female types increased across families. Variation in the degree of flower size dimorphism thus appears to be a result of variation in the degree of stamen abortion in females, the potential causes of which are discussed.  相似文献   

9.
All crested penguins present a unique reversed hatching asynchrony: the larger second-laid egg (B-egg) hatches before the smaller first-laid egg (A-egg). Although both eggs often hatch, the A-chick generally dies of starvation within days after hatching. However, within rockhopper penguins, the population at the Falkland Islands is unique in that some birds manage to raise both chicks. Although it has been suggested that the egg size dimorphism between A- and B-eggs may explain how long both eggs and chicks survive, this hypothesis has never been explicitly tested. We expect that both eggs are retained longer in the less dimorphic clutches than in the more dimorphic ones. In this paper, we have compiled egg measurements for three rockhopper penguin species (Eudyptes chrysocome, E. filholi and E. moseleyi) in order to compare the intra-clutch egg size dimorphism among these species. Furthermore, we have collected new data to compare egg size dimorphism between two populations of E. chrysocome (Falkland Islands versus Staten Island). A-egg volumes are more variable between species and populations than B-egg volumes. E. chrysocome and especially the population from the Falkland Islands produces the largest A-eggs and the least dimorphic eggs. Nevertheless, as differences in A-egg volumes between species and between the populations of Falkland Islands and Staten Island are stronger and more significant than differences in egg dimorphism, we suggest that A-egg volume, more than egg dimorphism, could be one of the factors influencing the prevalence of twins. A large A-egg and/or reduced egg dimorphism is probably necessary to enable rockhopper penguins to raise two chicks, but other reasons may also be involved which enable them to keep both eggs and chicks.  相似文献   

10.
11.
Diverse interactions between factors that influence body size complicate the identification of the primary determinants of sexual size dimorphism. Using data from a long‐term field study (1997–2009), we examined the contributions of the main proximate factors potentially influencing sexual size dimorphism from birth to adulthood in tiger snakes (Notechis scutatus). Data on body size, body mass and body condition of neonates, juveniles and adults were obtained by mark–recapture. Frequent recaptures allowed us to monitor reproductive status, diet and food intake, and to estimate survival and growth rates in age and sex classes. Additional data from females held briefly in captivity enabled us to assess reproductive output and the body mass lost at parturition (proxies for reproductive effort). From birth to maturity, individuals of both sexes experienced similar growth and mortality rates. We found no difference in diet, feeding and survival rates between the sexes, nor between juveniles and adults. On maturity, despite comparable diet and food intake by both sexes, the high energy requirements of vitellogenesis and gestation were responsible for a depletion of body reserves and probably resulted in a marked decrease in growth rates. Males were largely exempt from such costs of reproduction, and so could grow faster than females and attain larger body sizes. The absence of niche divergence between the sexes (uniformity of habitat, lack of predators) suggests that the impact of differential energetic investment for reproduction on growth rate is probably the main proximate factor influencing sexual size dimorphism in this species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 668–680.  相似文献   

12.
An undescribed bisexual grasshopper species closely related to the all-female parthenogenetic Moraba virgo has an X1X2Y sex chromosome mechanism which incorporates 7 chromosomes of the ancestral karyotype (the original X and three pairs of autosomes). Apparently three separate chromosomal fusions have occurred, one of these being a tandem fusion followed by a crossover which stabilized it in the sex chromosome system. M. virgo probably arose from an ancestor which had X1X2Y males but lacked the tandem fusion present in the new species, the females of virgo having the constitution X1X1X2O.Supported by Public Health Service Grant GM-07212 from the Division of General Medical Sciences, U.S. National Institutes of Health, and by a grant from the Australian Research Grants Committee.  相似文献   

13.
1. The effect of mating success, female fecundity and survival probability associated with intra‐sex variation in body size was studied in Mesophylax aspersus, a caddisfly species with female‐biased sexual size dimorphism, which inhabits temporary streams and aestivates in caves. Adults of this species do not feed and females have to mature eggs during aestivation. 2. Thus, females of larger size should have a fitness advantage because they can harbour more energy reserves that could influence fecundity and probability of survival until reproduction. In contrast, males of smaller size might have competitive advantages over others in mating success. 3. These hypotheses were tested by comparing the sex ratio and body size of individuals captured before and after the aestivation period. The associations between body size and female fecundity, and between mating success and body size of males, were explored under laboratory conditions. 4. During the aestivation period, the sex ratio changed from 1 : 1 to male biased (4 : 1), and a directional selection on body size was detected for females but not for males. Moreover, larger clutches were laid by females of larger size. Finally, differences in mating success between small and large males were not detected. These results suggest that natural selection (i.e. the differential mortality of females associated with body size) together with possible fecundity advantages, are important factors responsible of the sexual size dimorphism of M. aspersus. 5. These results highlight the importance of taking into account mechanisms other than those traditionally used to explain sexual dimorphism. Natural selection acting on sources of variation, such as survival, may be as important as fecundity and sexual selection in driving the evolution of sexual size dimorphism.  相似文献   

14.
《Journal of morphology》2017,278(12):1619-1627
Contests between same‐sex opponents over resources necessary for reproduction, as well interactions used to discern mate quality, often involve exaggerated traits wherein large individuals have disproportionately larger traits. This positive allometric scaling of weapons or signals facilitates communication during social interactions by accentuating body size differences between individuals. Typically, males carry these exaggerated traits, as males must compete over limited female gametes. However, in Nicrophorus beetles both males and females engage in physical contests over the vertebrate carcasses they need to provision and raise offspring. Male and female Nicrophorus beetles have extended clypeal membranes directly above their mandibles, which could serve as signals. We investigated the scaling relationships between clypeal membrane size and shape and body size for five species of North American burying beetle to determine whether clypeal membranes contain exaggerated body size information. We found that clypeal membranes for both sexes of all species scaled positively with body size (slope > 1). Three of the five species also displayed sexual dimorphism in aspects of clypeal membrane size and shape allometry despite lack of dimorphism in body size. In two dimorphic species, small male clypeal membranes were statistically indistinguishable from the female form. We conclude that colored clypeal membranes in Nicrophorus beetles do contain exaggerated body size information. Observed patterns of dimorphism suggest that males sometimes experience stronger selection on marking size and shape, which might be explained by life history differences among species.  相似文献   

15.
We molecularly cloned new families of site-specific repetitive DNA sequences from BglII- and EcoRI-digested genomic DNA of the Syrian hamster (Mesocricetus auratus, Cricetrinae, Rodentia) and characterized them by chromosome in situ hybridization and filter hybridization. They were classified into six different types of repetitive DNA sequence families according to chromosomal distribution and genome organization. The hybridization patterns of the sequences were consistent with the distribution of C-positive bands and/or Hoechst-stained heterochromatin. The centromeric major satellite DNA and sex chromosome-specific and telomeric region-specific repetitive sequences were conserved in the same genus (Mesocricetus) but divergent in different genera. The chromosome-2-specific sequence was conserved in two genera, Mesocricetus and Cricetulus, and a low copy number of repetitive sequences on the heterochromatic chromosome arms were conserved in the subfamily Cricetinae but not in the subfamily Calomyscinae. By contrast, the other type of repetitive sequences on the heterochromatic chromosome arms, which had sequence similarities to a LINE sequence of rodents, was conserved through the three subfamilies, Cricetinae, Calomyscinae and Murinae. The nucleotide divergence of the repetitive sequences of heterochromatin was well correlated with the phylogenetic relationships of the Cricetinae species, and each sequence has been independently amplified and diverged in the same genome.  相似文献   

16.
Theory predicts that sex chromsome linkage should reduce intersexual genetic correlations thereby allowing the evolution of sexual dimorphism. Empirical evidence for sex linkage has come largely from crosses and few studies have examined how sexual dimorphism and sex linkage are related within outbred populations. Here, we use data on an array of different traits measured on over 10,000 individuals from two pedigreed populations of birds (collared flycatcher and zebra finch) to estimate the amount of sex‐linked genetic variance (h2z). Of 17 traits examined, eight showed a nonzero h2Z estimate but only four were significantly different from zero (wing patch size and tarsus length in collared flycatchers, wing length and beak color in zebra finches). We further tested how sexual dimorphism and the mode of selection operating on the trait relate to the proportion of sex‐linked genetic variance. Sexually selected traits did not show higher h2Z than morphological traits and there was only a weak positive relationship between h2Z and sexual dimorphism. However, given the relative scarcity of empirical studies, it is premature to make conclusions about the role of sex chromosome linkage in the evolution of sexual dimorphism.  相似文献   

17.
ABSTRACT

Capsule A combination of several biometric measures enables the reliable sexing of the European Bee-eater Merops apiaster, a species with subtle sex differences in plumage and morphometry.

Aims To explore variation in biometrics and their suitability to discriminate sex in adult European Bee-eaters Merops apiaster.

Methods We sampled populations of a long-distance migratory species with low sexual size dimorphism, the European Bee-eater Merops apiaster, from colonies in western Iberia (Portugal) and Central Europe (Germany) to investigate body size variation and derive population-specific and general sex discriminant functions.

Results Overall, male Bee-eaters were larger than females while Bee-eaters from Germany and Portugal did not differ in size, except for primary length and tail length. The best single measurement to discriminate sex was wing length for Portuguese birds and tail tip length for German birds, as in the combined dataset. Multivariate discriminant functions of head-bill, wing and tail tip lengths provided the highest discriminant accuracy, discriminating sex for 91% of the birds from Portugal, 96% from Germany and 94% when using the combined dataset. Nonetheless, the discriminant accuracy remained high in the functions using only two variables for Portugal (head-bill and tail tip 91%, head-bill and wing 88%, wing and tail tip 88%), Germany (head-bill and tail tip 95%, wing and tail tip 97%) and in the combined dataset (head-bill and tail tip 92%, wing and tail tip 93%).

Conclusions Population specific discriminant functions allow sexing of European Bee-eaters by morphometry with high degree of accuracy at least for Iberia and Central European populations. Such discriminant functions can be used to assign the sex of adult Bee-eaters reliably and swiftly while the bird is still in the hand, highlighting the potential of these functions for rapidly sexing species with low degrees of sexual size and plumage dimorphism.  相似文献   

18.
Sexual size dimorphism (SSD) is a common phenomenon in animals and varies widely among species and among populations within species. Much of this variation is likely due to variance in selection on females vs. males. However, environmental variables could have different effects on females vs. males, causing variation in dimorphism. In this study, we test the differential‐plasticity hypothesis, stating that sex‐differential plasticity to environmental variables generates among‐population variation in the degree of sexual dimorphism. We examined the effect of temperature (22, 25, 28, and 31 °C) on sexual dimorphism in four populations of the cockroach Eupolyphaga sinensis Walker (Blattaria: Polyphagidae), collected at various latitudes. We found that females were larger than males at all temperatures and the degree of this dimorphism was largest at the highest temperature (31 °C) and smallest at the lowest temperature (22 °C). There is variation in the degree of SSD among populations (sex*population interaction), but differences between the sexes in their plastic responses (sex*temperature interaction) were not observed for body size. Our results indicated that sex‐differential plasticity to temperature was not the cause of differences among populations in the degree of sexual dimorphism in body size.  相似文献   

19.
Eppley SM 《Oecologia》2006,146(4):549-554
If males and females of a species differ in their effect on intraspecific competition then this can have significant ecological and evolutionary consequences because it can lead to size and mortality disparities between the sexes, and thus cause biased population sex ratios. If the degree of sexual dimorphism of competitive effect varies across environments then this variation can generate sex ratio variation within and between populations. In a California population of Distichlis spicata, a dioecious grass species exhibiting extreme within-population sex ratio variation (spatial segregation of the sexes), I evaluated the intraspecific competitive effects of male and female D. spicata seedlings in three soil types. The sex of seedlings was determined using a RAPD-PCR marker co-segregating with female phenotype. Distichlis spicata seedlings, regardless of sex, were six times larger when grown with male versus female conspecific seedlings in soil from microsites where the majority of D. spicata plants are female, and this sexual dimorphism of competitive effect was weaker or did not occur in other soil types. This study suggests that it is not just the higher costs of female versus male reproduction itself that cause spatial segregation of the sexes in D. spicata, but that differences in competitive abilities between the sexes—which occur as early as the seedling stage—can generate sex ratio variation.  相似文献   

20.
We investigated seasonality of gender differences in the patterns of flea infestation in nine rodent species to test if sex-biased parasitism in terms of mean abundance, species richness, prevalence and the level of aggregation (a) varies among hosts and between seasons, and (b) is linked to sexual size dimorphism. Sexual size differences were significant in both summer and winter in Acomys cahirinus, Gerbillus pyramidum and Meriones crassus, and in winter only in Acomys russatus, Gerbillus dasyurus, Gerbillus nanus and Sekeetamys calurus. Sexual size dimorphism was male biased except for A. russatus in which it was female biased. Manifestation of sexual differences in flea infestation was different among hosts between seasons. A significant effect of sex on mean flea abundance was found in six hosts, on mean flea species richness in five hosts and on prevalence in two hosts. Male-biased parasitism was found in summer in one host only and in winter in five hosts. Female-biased parasitism occurred in winter in A. russatus. Gender differences in the slopes of the regressions of log-transformed variances against log-transformed mean abundances occurred in three hosts. No relationship was found between sexual size dimorphism and any parasitological parameter in any season using both conventional regressions and the method of independent contrasts. Our results suggest that sex-biased parasitism is a complicated phenomenon that involves several different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号