首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondrial DNA as a marker of molecular diversity: a reappraisal   总被引:4,自引:0,他引:4  
Over the last three decades, mitochondrial DNA has been the most popular marker of molecular diversity, for a combination of technical ease-of-use considerations, and supposed biological and evolutionary properties of clonality, near-neutrality and clock-like nature of its substitution rate. Reviewing recent literature on the subject, we argue that mitochondrial DNA is not always clonal, far from neutrally evolving and certainly not clock-like, questioning its relevance as a witness of recent species and population history. We critically evaluate the usage of mitochondrial DNA for species delineation and identification. Finally, we note the great potential of accumulating mtDNA data for evolutionary and functional analysis of the mitochondrial genome.  相似文献   

2.
3.
Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments--outer membrane, intermembrane space (IMS), inner membrane and matrix--requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria.  相似文献   

4.
Polyamines interact with DNA as molecular aggregates.   总被引:7,自引:0,他引:7  
New compounds, named nuclear aggregates of polyamines, having a molecular mass of 8000, 4800 and < 1000 Da, were found in the nuclear extracts of several replicating cells. Their molecular structure is based on the formation of ionic bonds between polyamine ammonium and phosphate groups. The production of the 4800 Da compound, resulting from the aggregation of five or more < 1000 Da units, was increased in Caco-2 cells treated with the mitogen gastrin. Dissolving single polyamines in phosphate buffer resulted in the in vitro aggregation of polyamines with the formation of compounds with molecular masses identical to those of natural aggregates. After the interaction of the 4800 Da molecular aggregate with the genomic DNA at 37 degrees C, both the absorbance of DNA in phosphate buffer and the DNA mobility in agarose gel increased greatly. Furthermore, these compounds were able to protect the genomic DNA from digestion by DNase I, a phosphodiesterasic endonuclease. Our data indicate that the nuclear aggregate of polyamines interacts with DNA phosphate groups and influence, more efficaciously than single polyamines, both the conformation and the protection of the DNA.  相似文献   

5.
DNA repair mechanisms are fairly well characterized for nuclear DNA while knowledge regarding the repair mechanisms operable in mitochondria is limited. Several lines of evidence suggest that mitochondria contain DNA repair mechanisms. DNA lesions are removed from mtDNA in cells exposed to various chemicals. Protein activities that process damaged DNA have been detected in mitochondria. As will be discussed, there is evidence for base excision repair (BER), direct damage reversal, mismatch repair, and recombinational repair mechanisms in mitochondria, while nucleotide excision repair (NER), as we know it from nuclear repair, is not present.  相似文献   

6.
The present study examined the genetic variation of the family Osteoglossidae from different geographical locations based on the mitochondrial NADH dehydrogenase subunit 2 (ND2) and ATPase subunit 6 (ATPase6) genes; we then re-constructed the phylogenetic relationships using the two sequences in combination. The results showed that the partial sequences of mitochondrial ND2 and ATPase6 of the family Osteoglossidae were 813 bp and 669 bp, respectively. A total of 42 species-specific nucleotide positions of the family Osteoglossidae were found to be useful for molecular identification. The sequence variation showed greater differences (8.3% ~ 28.1% for the combined sequences, 8.3% ~ 26.7% for the ND2 gene, and 9.3% ~ 28.7% for the ATPase6 gene) among the different species of Osteoglossidae, and there was a significant association between the genetic difference and geographical location. Phylogenetic analyses using neighbor-joining, Bayesian inference, and maximum parsimony (MP) methods based on the combined sequences of the two genes were able to distinguish the different species and were in agreement with the existing taxonomy based on morphological characters and in association with the geographical distribution among seven species of the family Osteoglossidae.  相似文献   

7.
N,N-Dimethylformamide (DMF) has been widely used in industries because of its extensive miscibility with water and solvents. Its health effects include hepatotoxicity and male reproductoxicity, possibly linked with mitochondrial DNA (mtDNA) alterations including mtDNA common deletion (DeltamtDNA(4977)) and mtDNA copy number. The relationship between DMF exposure and mtDNA alterations, however, has not been postulated yet. The purposes of this study were to investigate whether the DMF exposure is associated with DeltamtDNA(4977) and mtDNA copy number and to evaluate the DMF-derived mtDNA alterations are more associated with exposure to the airborne DMF concentrations or to the levels of two urinary DMF biomarkers of N-methylformamide (NMF) and N-acetyl-S-(N-methylcarbamoryl) cysteine(AMCC). Thirteen DMF-exposed workers and 13 age and seniority-matched control workers in a synthetic leather factory were monitored on their airborne DMF, NMF and AMCC in the urine as well as DeltamtDNA(4977) and mtDNA copy number in blood cells. We found that the frequencies of relative DeltamtDNA(4977) in DMF-exposed group were significantly higher than those in the control group. Moreover, elevation in the proportion of DeltamtDNA(4977) of individuals with high urine AMCC (U-AMCC) and airborne DMF levels were significantly higher than those without. We conclude that long-term exposure to DMF is highly associated with the alterations of mtDNA in urine and blood cells. The DeltamtDNA(4977) was more significantly related to repeated exposure to DMF and mtDNA copy number was more closely related to short-term DMF exposure. We also confirmed that U-AMCC is more appropriate to serve as a toxicity biomarker for DMF exposure than U-NMF. Further study with a larger number of subjects is warranted.  相似文献   

8.
9.
Photolyase genes of Saccharomyces cerevisiae and Escherichia coli were expressed in S. cerevisiae and photoreactivation in nuclei and mitochondria of the host cells was analyzed by determination of survival and petit rates. Yeast photolyase was able to repair mitochondrial DNA effectively, whereas E. coli photolyase could reduce only a small fraction of the petit rate produced by UV irradiation. Analysis using fusion between yeast photolyase and E. coli lacZ genes as well as a chimeric gene between yeast and E. coli photolyase genes suggests the importance of the protruding amino terminal region of the yeast photolyase for its transport into mitochondria. A significant similarity between the protruding amino termini of yeast photolyase and yeast uracil-DNA-glycosylase suggests a common functional importance of the terminal sequences for both DNA repair enzymes.  相似文献   

10.
Mitochondrial DNA and genetic disease.   总被引:3,自引:0,他引:3  
Since the human mitochondrial genome was characterised and sequenced in 1981, it has been viewed as the likely site of genetic diseases showing a maternal inheritance pattern and associated with defects of the respiratory chain, such as the mitochondrial myopathies (MMs). The properties that make it a candidate for the source of such conditions are that it encodes polypeptides involved in electron transport and that it is maternally inherited. However, several of the mtDNA diseases only fulfill one or other of these criteria: the first group of mtDNA diseases showed only sporadic deletions, and the first point mutation in Leber's Hereditary Optic Neuropathy (LHON) is not associated with a clear biochemical defect. Furthermore, it is now clear that both autosomal dominant and probably recessive nuclear genes can cause abnormalities of mtDNA. Each of these major groups will be considered in turn.  相似文献   

11.
Bordetella pertussis, the causative agent of whooping cough in humans, secretes a number of toxins, including adenylate cyclase-hemolysin (AC-Hly), and induces macrophage apoptosis. We investigated the effects of B. pertussis on mitochondrial membrane potential (deltapsim) and ATP levels, as possible determinants of cell death. Using the fluorescent probe JC-1, we found that infection of human monocytes by B. pertussis lead to a disruption in host-cell deltapsim. deltapsim alterations were preceded by a massive increase in cyclic AMP, a moderate decrease in ATP, and was independent from oxidative stress. These changes were observed when human monocytes were infected by the parental B. pertussis 18323 but not when infected by the mutants deficient in the expression of AC-Hly. Exposure of human monocytes to purified AC-Hly induced changes comparable to those observed with the B. pertussis parental strain. Our results provide a mechanistic relationship between AC-Hly, ATP, and deltapsim disruption in the cascade of events leading to B. pertussis-induced apoptosis.  相似文献   

12.
13.
14.
A cosmid library and physical maps of mitochondrial DNA (mtDNA) from a liverwort, Marchantia polymorpha, were constructed using the cosmid clones. Electrophoresis profile and the physical maps indicated that the liverwort mtDNA was approximately 183 kb long, the smallest among plant mtDNAs, and that it consisted of a single circular molecule. Southern hybridization analysis showed that genes typical to the mitochondrial genome existed in a single copy, and also that there was no incorporation of chloroplast DNA fragments into the mitochondrial genome.  相似文献   

15.
Mitochondrial DNA variation in Nicobarese Islanders.   总被引:4,自引:0,他引:4  
The aboriginal populations living in the Nicobar Islands are hypothesized to be descendants of people who were part of early human dispersals into Southeast Asia. However, analyses of ethnographic histories, languages, morphometric data, and protein polymorphisms have not yet resolved which worldwide populations are most closely related to the Nicobarese. Thus, to explore the origins and affinities of the Nicobar Islanders, we analyzed mitochondrial DNA (mtDNA) hypervariable region 1 sequence data from 33 Nicobarese Islanders and compared their mtDNA haplotypes to those of neighboring East Asians, mainland and island Southeast Asians, Indians, Australian aborigines, Pacific Islanders, and Africans. Unique Nicobarese mtDNA haplotypes, including five Nicobarese mtDNA haplotypes linked to the COII/tRNA(Lys) 9-bp deletion, are most closely related to mtDNA haplotypes from mainland Southeast Asian Mon-Kmer-speaking populations (e.g., Cambodians). Thus, the dispersal of southern Chinese into mainland Southeast Asia may have included a westward expansion and colonization of the islands of the Andaman Sea.  相似文献   

16.
Mitochondrial DNA diseases are common neurological conditions caused by mutations in the mitochondrial genome or nuclear genes responsible for its maintenance. Current treatments for these disorders are focussed on the management of the symptoms, rather than the correction of biochemical defects caused by the mutation. This review focuses on the molecular effects of mutations, the symptoms they cause and current work focusing on the development of targeted treatments for mitochondrial DNA disease.  相似文献   

17.
袁娟  张其中  罗芬 《生态科学》2008,27(4):272-276
鱼类是脊椎动物亚门中种属数量最多的类群,分布广泛,起源复杂,拥有丰富的遗传多样性.多种自然和人为因素对鱼类遗传资源存在不同程度的作用,对鱼类生存和进化有重要影响.采用分子手段探讨鱼类遗传资源现状,可为遗传育种、鱼类进化研究和遗传资源保护等提供一定科学依据.以鱼类线粒体DNA(mtDNA)为代表的分子标记技术已被用于研究鱼类群体遗传结构及其与影响因素间的关系.本文综述了鱼类mtDNA的结构特征及其在鱼类分子群体遗传研究中的应用,对了解和运用mtDNA等分子标记研究鱼类群体遗传具有一定参考价值.  相似文献   

18.
Mitochondrial DNA sequence variation in Greeks.   总被引:1,自引:0,他引:1  
Mitochondrial DNA (mtDNA) control region sequences were determined in 54 unrelated Greeks, coming from different regions in Greece, for both segments HVR-I and HVR-II. Fifty-two different mtDNA haplotypes were revealed, one of which was shared by three individuals. A very low heterogeneity was found among Greek regions. No one cluster of lineages was specific to individuals coming from a certain region. The average pairwise difference distribution showed a value of 7.599. The data were compared with that for other European or neighbor populations (British, French, Germans, Tuscans, Bulgarians, and Turks). The genetic trees that were constructed revealed homogeneity between Europeans. Median networks revealed that most of the Greek mtDNA haplotypes are clustered to the five known haplogroups and that a number of haplotypes are shared among Greeks and other European and Near Eastern populations.  相似文献   

19.
Research on mitochondrial fusion and fission (mitochondrial dynamics) has gained much attention in recent years, as it is important for understanding many biological processes, including the maintenance of mitochondrial functions, apoptosis, and cancer. The rate of mitochondrial biosynthesis and degradation can affect various aspects of tumor progression. However, the role of mitochondrial dynamics in melanoma progression remains controversial and requires a mechanistic understanding to target the altered metabolism of cancer cells. Therefore, in our study, we disrupted mitochondrial fission with mdivi-1, the reported inhibitor of dynamin related protein 1 (Drp1), and knocked down Drp1 and Mfn2 to evaluate the effects of mitochondrial dynamic alterations on melanoma cell progression. Our confocal study results showed that mitochondrial fission was inhibited both in mdivi-1 and in Drp1 knockdown cells and, in parallel, mitochondrial fusion was induced. We also found that mitochondrial fission inhibition by mdivi-1 induced cell death in melanoma cells. However, silencing Drp1 and Mfn2 did not affect cell viability, but enhanced melanoma cell migration. We further show that dysregulated mitochondrial fusion by Mfn2 knockdowns suppressed the oxygen consumption rate of melanoma cells. Together, our findings suggest that mitochondrial dynamic alterations regulate melanoma cell migration and progression.  相似文献   

20.
Metabolic alterations have been observed in many cancer types. The deregulated metabolism has thus become an emerging hallmark of the disease, where the metabolism is frequently rewired to aerobic glycolysis. This has led to the concept of “metabolic reprogramming”, which has therefore been extensively studied. Over the years, it has been characterized the enhancement of aerobic glycolysis, where key mutations in some of the enzymes of the TCA cycle, and the increased glucose uptake, are used by cancer cells to achieve a “metabolic phenotype” useful to gain a proliferation advantage. Many studies have highlighted in detail the signaling pathways and the molecular mechanisms responsible for the glycolytic switch. However, glycolysis is not the only metabolic process that cancer cells rely on. Oxidative Phosphorylation (OXPHOS), gluconeogenesis or the beta-oxidation of fatty acids (FAO) may be involved in the development and progression of several tumors. In some cases, these metabolisms are even more crucial than aerobic glycolysis for the tumor survival. This review will focus on the contribution of these alterations of metabolism to the development and survival of cancers. We will also analyze the molecular mechanisms by which the balance between these metabolic processes may be regulated, as well as some of the therapeutical approaches that can derive from their study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号