首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equilibrium and kinetics of canine milk lysozyme folding/unfolding were studied by peptide and aromatic circular dichroism and tryptophan fluorescence spectroscopy. The Ca2+-free apo form of the protein exhibited a three-state equilibrium unfolding, in which the molten globule state is well populated as an unfolding intermediate. A rigorous analysis of holo protein unfolding, including the data from the kinetic refolding experiments, revealed that the holo protein also underwent three-state unfolding with the same molten globule intermediate. Although the observed kinetic refolding curves of both forms were single-exponential, a burst-phase change in the peptide ellipticity was observed in both forms, and the burst-phase intermediates of both forms were identical to each other with respect to their stability, indicating that the intermediate does not bind Ca2+. This intermediate was also shown to be identical to the molten globule state observed at equilibrium. The phi-value analysis, based on the effect of Ca2+ on the folding and unfolding rate constants, showed that the Ca2+-binding site was not yet organized in the transition state of folding. A comparison of the result with that previously reported for alpha-lactalbumin indicated that the folding initiation site is different between canine milk lysozyme and alpha-lactalbumin, and hence, the folding pathways must be different between the two proteins. These results thus provide an example of the phenomenon wherein proteins that are very homologous to each other take different folding pathways. It is also shown that the native state of the apo form is composed of at least two species that interconvert.  相似文献   

2.
Sasahara K  Nitta K 《Proteins》2006,63(1):127-135
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.  相似文献   

3.
Folding mechanisms of a variant of green fluorescent protein (F99S/M153T/V163A) were investigated by a wide variety of spectroscopic techniques. Equilibrium measurements on acid-induced denaturation of the protein monitored by chromophore and tryptophan fluorescence and small-angle X-ray scattering revealed that this protein accumulates at least two equilibrium intermediates, a native-like intermediate and an unfolding intermediate, the latter of which exhibits the characteristics of the molten globule state under moderately denaturing conditions at pH 4. To elucidate the role of the equilibrium unfolding intermediate in folding, a series of kinetic refolding experiments with various combinations of initial and final pH values, including pH 7.5 (the native condition), pH 4.0 (the moderately denaturing condition where the unfolding intermediate is accumulated), and pH 2.0 (the acid-denaturing condition) were carried out by monitoring chromophore and tryptophan fluorescence. Kinetic on-pathway intermediates were accumulated during the folding on the refolding reaction from pH 2.0 to 7.5. However, the signal change corresponding to the conversion from the acid-denatured to the kinetic intermediate states was significantly reduced on the refolding reaction from pH 4.0 to pH 7.5, whereas only the signal change corresponding to the above conversion was observed on the refolding reaction from pH 2.0 to pH 4.0. These results indicate that the equilibrium unfolding intermediate is composed of an ensemble of the folding intermediate species accumulated during the folding reaction, and thus support a hierarchical model of protein folding.  相似文献   

4.
Proteins in the alpha-lactalbumin and c-type lysozyme family have been studied extensively as model systems in protein folding. Early formation of the alpha-helical domain is observed in both alpha-lactalbumin and c-type lysozyme; however, the details of the kinetic folding pathways are significantly different. The major folding intermediate of hen egg-white lysozyme has a cooperatively formed tertiary structure, whereas the intermediate of alpha-lactalbumin exhibits the characteristics of a molten globule. In this study, we have designed and constructed an isolated alpha-helical domain of hen egg-white lysozyme, called Lyso-alpha, as a model of the lysozyme folding intermediate that is stable at equilibrium. Disulfide-exchange studies show that under native conditions, the cysteine residues in Lyso-alpha prefer to form the same set of disulfide bonds as in the alpha-helical domain of full-length lysozyme. Under denaturing conditions, formation of the nearest-neighbor disulfide bonds is strongly preferred. In contrast to the isolated alpha-helical domain of alpha-lactalbumin, Lyso-alpha with two native disulfide bonds exhibits a well-defined tertiary structure, as indicated by cooperative thermal unfolding and a well-dispersed NMR spectrum. Thus, the determinants for formation of the cooperative side-chain interactions are located mainly in the alpha-helical domain. Our studies suggest that the difference in kinetic folding pathways between alpha-lactalbumin and lysozyme can be explained by the difference in packing density between secondary structural elements and support the hypothesis that the structured regions in a protein folding intermediate may correspond to regions that can fold independently.  相似文献   

5.
For several proteins, a striking resemblance has been observed between the equilibrium partially folded state and the kinetic burst-phase intermediate, observed just after the dead-time in refolding experiments. This has led to the general statement that the conformation of both types of intermediates is similar. We show, at least for one of the proteins investigated here, that, although both states have some common characteristics, they are not identical. LYLA1 is a chimeric protein resulting from the transplantation of the Ca(2+)-binding loop and the adjacent helix C of bovine alpha-lactalbumin into the homologous position (residues 76-102) in human lysozyme. The apo-form of LYLA1 unfolds through a partially folded state, in analogy with the folding behaviour of the structurally homologous alpha-lactalbumin. The folding kinetics of LYLA1 and of its wild-type homologue, human lysozyme, are investigated by means of stopped-flow fluorescence and CD spectroscopy. In the case of human lysozyme, refolding involves parallel pathways as indicated by experiments in the presence of a fluorescent inhibitor. For apo-LYLA1, the burst-phase intermediate is compared with the equilibrium intermediate. At neutral pH, both states correspond, in that an important amount of secondary structure has been established, but the burst-phase intermediate is shown to be significantly less stable than the equilibrium intermediate. At pH 1.85, in the presence of 1.5 M guanidinium hydrochloride (GdnHCl) and at 25 degrees C, the equilibrium partially folded state of LYLA1 is 100% populated. When LYLA1 is rapidly diluted from 6 M GdnHCl to 1.5 M under these conditions, a time-dependent evolution of the fluorescence signal is observed, reflecting the transition from a burst-phase to a different equilibrium intermediate. These results provide strong evidence for the non-identity of both states in this protein.  相似文献   

6.
Refolding kinetics of two homologous proteins, lysozyme and alpha-lactalbumin, were studied by following the time-dependent changes in the circular dichroism spectra in the aromatic and the peptide regions. The refolding was initiated by 20-fold dilution of the protein solutions originally unfolded at 6 M guanidine hydrochloride, at pH 1.5 for lysozyme and pH 7.0 for alpha-lactalbumin at 4.5 degrees C. In the aromatic region, almost full changes in ellipticity that were expected from the equilibrium differences in the spectra between the native and unfolded proteins were observed kinetically. The major fast phase of lysozyme folding has a decay time of 15 s. The decay time of alpha-lactalbumin depends on the presence or absence of bound Ca2+: 10 s for the holoprotein and 100 s for the apoprotein. In the peptide region, however, most of the ellipticity changes of the two proteins occur within the dead time (less than 3 s) of the present measurements. This demonstrates existence of an early folding intermediate which is still unfolded when measured by the aromatic bands but has folded secondary structure as measured by the peptide bands. Extrapolation of the ellipticity changes to zero time at various wavelengths gives a spectrum of the folding intermediate. Curve fitting of the peptide spectra to estimate the secondary structure fractions has shown that the two proteins assume a similar structure at an early stage of folding and that the intermediate has a structure similar to that of partially unfolded species produced by heat and, for alpha-lactalbumin, also by acid and a moderate concentration of guanidine hydrochloride.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
For small single-domain proteins, formation of the native conformation (N) from a fully unfolded form (U) or from a partially folded intermediate (I) occurs typically in a highly cooperative process that can be described by a two-state model. However, it is not clear whether cooperativity arises early along the folding reaction and whether folding intermediates are also formed in highly cooperative processes. Here, we show that each previously identified step leading apomyoglobin from its unfolded form to its native form, namely, the U <= => Ia, the Ia <= => Ib, and the Ib <= => N reactions, exhibits typical features of a two-state reaction. First, refolding and unfolding kinetics of the earliest U <= => Ia reaction are measurable at pH 4.2 within the urea-induced unfolding transition [Jamin, M., and Baldwin, R. L. (1996) Nat. Struct. Biol. 3, 613-618; Jamin, M., and Baldwin, R. L. (1998) J. Mol. Biol. 276, 491-504], and we report here that sub-millisecond kinetics measured by far-UV circular dichroism (CD), a probe of secondary structure, are similar to those measured by Trp fluorescence, a probe of hydrophobic core formation and chain collapse. These results confirm that folding of the earliest intermediate, Ia, occurs in a highly cooperative process, in which hydrophobic collapse and secondary structure formation occur concomitantly in the A(B)GH core. Second, when the refolding of N is measured at high pH, starting from the acid-unfolded ensemble, the formation of Ia occurs in the mixing time of the sub-millisecond stopped-flow, but the subsequent steps, the Ia <= => Ib and Ib <= => N reactions, exhibit similar kinetics by far-UV CD and Trp fluorescence, indicating that these two late stages of the apoMb folding process also occur in highly cooperative, two-state reactions.  相似文献   

8.
Ca2+-induced alteration in the unfolding behavior of alpha-lactalbumin   总被引:5,自引:0,他引:5  
Comparative studies of the unfolding equilibria of two homologous proteins, bovine alpha-lactalbumin and hen lysozyme, induced by treatment with guanidine hydrochloride have been made by analysis of the peptide and the aromatic circular dichroism spectra. The effect of the specific binding of Ca2+ ion by the former protein was taken into account in interpreting the unfolding equilibria of the protein. Proton nuclear magnetic resonance spectra of alpha-lactalbumin were also measured for the purpose of characterizing an intermediate structural state of the protein. In previous studies, alpha-lactalbumin was shown to be an exceptional protein whose equilibrium unfolding does not obey the two-state model of unfolding, although lysozyme is known to follow the two-state unfolding mechanism. The present results show that the apparent unfolding behavior of alpha-lactalbumin depends on Ca2+ concentration. At a low concentration of Ca2+, alpha-lactalbumin unfolds with a stable intermediate that has unfolded tertiary structure, as evidenced by the featureless nuclear magnetic resonance and aromatic circular dichroism spectra, but has folded secondary structure as evidenced by the peptide circular dichroism spectra. However, in the presence of a sufficiently high concentration of Ca2+, the unfolding transition of alpha-lactalbumin resembles that of lysozyme. The transition occurs between the two states, the native and the fully unfolded states, and the cooperativity of the unfolding is essentially the same as that of lysozyme. Such a change in the apparent unfolding behavior evidently results from an increase in the stability of the native state relative to that of the intermediate induced by the specific Ca2+ binding to native alpha-lactalbumin. The results are useful for understanding the relationship between the protein stability and the apparent unfolding behavior.  相似文献   

9.
Ke H  Zhang S  Li J  Howlett GJ  Wang CC 《Biochemistry》2006,45(50):15100-15110
The homodimeric protein DsbC is a disulfide isomerase and a chaperone located in the periplasm of Escherichia coli. We have studied the guanidine hydrochloride (GdnHCl)-induced unfolding and refolding of DsbC using mutagenesis, intrinsic fluorescence, circular dichroism spectra, size-exclusion chromatography, and sedimentation velocity analysis. The equilibrium refolding and unfolding of DsbC was thermodynamically reversible. The equilibrium folding profile measured by fluorescence excited at 280 nm exhibited a three-state transition profile with a stable folding intermediate formed at 0-2.0 M GdnHCl followed by a second transition at higher GdnHCl concentrations. Sedimentation velocity data revealed dissociation of the dimer to the monomer over the concentration range of the first transition (0-2.0 M). In contrast, fluorescence emission data for DsbC excited at 295 nm showed a single two-state transition. Fluorescence emission data for the equilibrium unfolding of the monomeric G49R mutant, excited at either 295 or 280 nm, indicated a single two-state transition. Data obtained for the dimeric Y52W mutant indicated a strong protein concentration dependence of the first transition but no dependence of the second transition in equilibrium unfolding. This suggests that the fluorescence of Y52W sensitively reports conformational changes caused by dissociation of the dimer. Thus, the folding of DsbC follows a three-state transition model with a monomeric folding intermediate formed in 0-2.0 M GdnHCl. The folding of DsbC in the presence of DTT indicates an important role for the non-active site disulfide bond in stabilizing the conformation of the molecule. Dimerization ensures the performance of chaperone and isomerase functions of DsbC.  相似文献   

10.
Chaudhuri TK  Arai M  Terada TP  Ikura T  Kuwajima K 《Biochemistry》2000,39(50):15643-15651
The equilibrium and kinetics of the unfolding and refolding of authentic and recombinant human alpha-lactalbumin, the latter of which had an extra methionine residue at the N-terminus, were studied by circular dichroism spectroscopy, and the results were compared with the results for bovine and goat alpha-lactalbumins obtained in our previous studies. As observed in the bovine and goat proteins, the presence of the extra methionine residue in the recombinant protein remarkably destabilized the native state, and the destabilization was entirely ascribed to an increase in the rate of unfolding. The thermodynamic stability of the native state against the unfolded state was lower, and the thermodynamic stability of the molten globule state against the unfolded state was higher for the human protein than for the other alpha-lactalbumins previously studied. Thus, the population of the molten globule intermediate was higher during the equilibrium unfolding of human alpha-lactalbumin by guanidine hydrochloride. Unlike the molten globule states of the bovine and goat proteins, the human alpha-lactalbumin molten globule showed remarkably more intense circular dichroism ellipticity than the native state in the far-ultraviolet region below 225 nm. During refolding from the unfolded state, human alpha-lactalbumin thus exhibited overshoot kinetics, in which the alpha-helical peptide ellipticity exceeded the native value when the molten globule folding intermediate was formed in the burst phase. The subsequent folding involved reorganization of nonnative secondary structures. It should be noted that the rate constant of the major refolding phase was approximately the same among the three types of alpha-lactalbumin and that the rate constant of unfolding was accelerated 18-600 times in the human protein, and these results interpreted the lower thermodynamic stability of this protein.  相似文献   

11.
The native state (1)H, (15)N resonance assignment of 123 of the 128 nonproline residues of canine milk lysozyme has enabled measurements of the amide hydrogen exchange of over 70 amide hydrogens in the molten globule state. To elucidate the mechanism of protein folding, the molten globule state has been studied as a model of the folding intermediate state. Lysozyme and alpha-lactalbumin are homologous to each other, but their equilibrium unfolding mechanisms differ. Generally, the folding mechanism of lysozyme obeys a two-state model, whereas that of alpha-lactalbumin follows a three-state model. Exceptions to this rule are equine and canine milk lysozymes, which exhibit a partially unfolded state during the equilibrium unfolding; this state resembles the molten globule state of alpha-lactalbumin but with extreme stability. Study of the molten globules of alpha-lactalbumin and equine milk lysozyme showed that the stabilities of their alpha-helices are similar, despite the differences in the thermodynamic stability of their molten globule states. On the other hand, our hydrogen exchange study of the molten globule of canine milk lysozyme showed that the alpha-helices are more stabilized than in alpha-lactalbumin or equine milk lysozyme and that this enhanced stability is caused by the strengthened cooperative interaction between secondary structure elements. Thus, our results underscore the importance of the cooperative interaction in the stability of the molten globule state.  相似文献   

12.
The unfolding transition and kinetic refolding of dimeric creatine kinase after urea denaturation were monitored by intrinsic fluorescence and far ultraviolet circular dichroism. An equilibrium intermediate and a kinetic folding intermediate were identified and characterized. The fluorescence intensity of the equilibrium intermediate is close to that of the unfolded state, whereas its ellipticity at 222 nm is about 50% of the native state. The transition curves measured by these two methods are therefore non-coincident. The kinetic folding intermediate, formed during the burst phase of refolding under native-like conditions, possesses 75% of the native secondary structure, but is mostly lacking in native tertiary structure. In moderate concentrations of urea, only the initial, rapid change in fluorescence intensity or negative ellipticity is observed, and the final state values do not reach the equivalent unfolding values. The unfolding and refolding transition curves measured under identical conditions are non-coincident within the transition from intermediate to fully unfolded state. It is observed by SDS-PAGE that disulfide bond-linked dimeric or oligomeric intermediates are formed in moderate urea concentrations, especially in the refolding reaction. These rapidly formed, soluble intermediates represent an off-pathway event that leads to the hysteresis in the refolding transition curves.  相似文献   

13.
The reversible unfolding and refolding kinetics of alpha-lactalbumin induced by concentration jump of guanidine hydrochloride were measured at pH 7.0 and 25 degrees C using tryptophan absorption at 292 nm, with varying concentrations of the denaturant and free Ca2+. The refolding reaction of alpha-lactalbumin from the fully unfolded (D) state occurs through the two stages: (1) instantaneous formation of a compact intermediate (the A state) that has a native-like secondary structure; (2) tight packing of the preformed secondary structure segments to lead finally to the native structure, this stage being the rate-determining step of the reaction and associated with acquisition of the specific structure necessary for strong Ca2+ binding. Under strongly native conditions, the observed kinetics of refolding is also complicated by the presence of a slow-folding species (10%) in the unfolded state. Considering these facts, the microscopic rate constants in folding and unfolding directions have been evaluated from the observed kinetics and from the equilibrium constants of the transitions among the native (N), A and D states. Close linear relationships have been found in the plots of the activation free energies, obtained from the microscopic rate constants, against the denaturant concentration. They are similar to the linear relationship between the free energy of unfolding and the denaturant concentration. It was demonstrated that the slope of the plots should be approximately proportional to a change in accessible surface area of the protein during the respective activation process, and that only a third of the difference in accessible surface area between A and N is buried in the critical activated state of folding. However, the selective effect of Ca2+ binding on the folding rate constant has been observed also, demonstrating that the specific Ca2+-binding substructure in the N state is already organized in the activated state. Thus, only a part of the protein molecule involving the Ca2+-binding region is organized in the activated state, with the other part of the molecule being left less organized, suggesting that the second stage of folding may be a sequential growing process of organized assemblage of the performed secondary structure segments.  相似文献   

14.
Nakao M  Maki K  Arai M  Koshiba T  Nitta K  Kuwajima K 《Biochemistry》2005,44(17):6685-6692
The intermediate in the equilibrium unfolding of canine milk lysozyme induced by a denaturant is known to be very stable with characteristics of the molten globule state. Furthermore, there are at least two kinetic intermediates during refolding of this protein: a burst-phase (first) intermediate formed within the dead time of stopped-flow measurements and a second intermediate that accumulates with a rate constant of 22 s(-)(1). To clarify the relationships of these intermediates with the equilibrium intermediate, and also to characterize the structural changes of the protein during refolding, here we studied the kinetic refolding reactions using stopped-flow circular dichroism at 10 different wavelengths and obtained the circular dichroism spectra of the intermediates. Comparison of the circular dichroism spectra of the intermediates, as well as the absence of observed kinetics in the refolding from the fully unfolded state to the equilibrium intermediate, has demonstrated that the burst-phase intermediate is equivalent to the equilibrium intermediate. The difference circular dichroism spectrum that represented changes from the kinetic intermediate to the native state had characteristics of an exciton coupling band, indicating that specific packing of tryptophan residues in this protein occurred in this phase. From these findings, we propose a schematic model of the refolding of canine milk lysozyme that is consistent with the hierarchical mechanism of protein folding.  相似文献   

15.
The denaturant-induced equilibrium unfolding transition of equine beta-lactoglobulin was investigated by ultraviolet absorption, fluorescence, and circular dichroism (CD) spectra. An equilibrium intermediate populates at moderate denaturant concentrations, and its CD spectrum is similar to that of the molten globule state previously observed for this protein at acid pH [Ikeguchi, M., Kato, S., Shimizu, A., and Sugai, S. (1997) Proteins: Struct., Funct., Genet. 27, 567-575]. The unfolding and refolding kinetics were also investigated by the stopped-flow CD and fluorescence. A significant change in the CD intensity was observed within the dead time of measurements (25 ms) when the refolding reaction was initiated by diluting the urea-unfolded protein solution, indicating the transient accumulation of the folding intermediate. The CD spectrum of this burst-phase intermediate agrees well with that of the molten globule state at acid pH. The stability of the burst-phase intermediate was also estimated from the urea-concentration dependence of the burst-phase amplitude, and it shows a fair agreement with that of the equilibrium intermediate. These results indicate that the molten globule state of equine beta-lactoglobulin populates at moderate urea concentration as well as at acid pH and it is equivalent with the kinetic folding intermediate.  相似文献   

16.
Arai M  Hamel P  Kanaya E  Inaka K  Miki K  Kikuchi M  Kuwajima K 《Biochemistry》2000,39(12):3472-3479
Human lysozyme has four disulfide bonds, one of which, Cys65-Cys81, is included in a long loop of the beta-domain. A cysteine-scanning mutagenesis in which the position of Cys65 was shifted within a continuous segment from positions 61 to 67, with fixed Cys81, has previously shown that only the mutant W64CC65A, which has a nonnative Cys64-Cys81 disulfide, can be correctly folded and secreted by yeast. Here, using the W64CC65A mutant, we investigated the effects of an alternative disulfide bond on the structure, stability, and folding of human lysozyme using circular dichroism (CD) and fluorescence spectroscopy combined with a stopped-flow technique. Although the mutant is expected to have a different main-chain structure from that of the wild-type protein around the loop region, far- and near-UV CD spectra show that the native state of the mutant has tightly packed side chains and secondary structure similar to that of the wild-type. Guanidine hydrochloride-induced equilibrium unfolding transition of the mutant is reversible, showing high stability and cooperativity of folding. In the kinetic folding reaction, both proteins accumulate a similar burst-phase intermediate having pronounced secondary structure within the dead time of the measurement and fold into the native structure by means of a similar folding mechanism. Both the kinetic refolding and unfolding reactions of the mutant protein are faster than those of the wild-type, but the increase in the unfolding rate is larger than that of the refolding rate. The Gibbs' free-energy diagrams obtained from the kinetic analysis suggest that the structure around the loop region in the beta-domain of human lysozyme is formed after the transition state of folding, and thus, the effect of the alternative disulfide bond on the structure, stability, and folding of human lysozyme appears mainly in the native state.  相似文献   

17.
M Nozaka  K Kuwajima  K Nitta  S Sugai 《Biochemistry》1978,17(18):3753-3758
To discuss the relation between the folding mechanism and the chemical structure of proteins, the reversible unfolding reactions of human alpha-lactalbumin by acidification and by guanidine hydrochloride at 25 degrees C are studied by means of circular dichroism, difference spectra and pH-jump measurements and are compared with those for bovine alpha-lactalbumin. As shown previously for bovine alpha-lactalbumin, the folding process at neutral pH is not explained by a simple two-state mechanism but involves an intermediate form that has the same amount of helical structures as the native form. The transition between the intermediate and the fully denatured states is too rapid to be measured and corresponds to the helix-coil transition of the backbone. One of the differences of human alpha-lactalbumin from the bovine protein is the remarkable stability of the intermediate at neutral pH, which can be explained by differences in the primary chemical structure. Another difference is the existence at acid pH of an additional helical form, which is more helical than the native form. The transition from this to the intermediate or to the fully denatured one also is shown to resemble the helix-coil transition. The following folding scheme of human alpha-lactalbumin is proposed: formula: (see text). Here N is the native form, and the intermediate is a macroscopic state distributed around the state A3 at neutral pH, while the distribution in the acid and fully denautured states shifts toward Am and A-n, respectively.  相似文献   

18.
Fluorescence resonance energy transfer (FRET) is one of the few methods available to measure the rate at which a folding protein collapses. Using staphylococcal nuclease in which a cysteine residue was engineered in place of Lys64, permitted FRET measurements of the distance between the donor tryptophan 140 and 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonic acid-labeled Cys64. These measurements were undertaken on both equilibrium partially folded intermediates at low pH (A states), as well as transient intermediates during stopped-flow refolding. The results indicate that there is an initial collapse of the protein in the deadtime of the stopped-flow instrument, corresponding to a regain of approximately 60% of the native signal, followed by three slower transients. This is in contrast to circular dichroism measurements which show only 20-25% regain of the native secondary structure in the burst phase. Thus hydrophobic collapse precedes the formation of substantial secondary structure. The first two detected transient intermediate species have FRET properties essentially identical with those of the previously characterized equilibrium A state intermediates, suggesting similar structures between the equilibrium and transient intermediates.The effects of anions on the folding of acid-unfolded staphylococcal nuclease, and urea on the unfolding of the resulting A states, indicates that in folding the protein becomes compact prior to formation of major secondary structure, whereas in unfolding the protein expands prior to major loss of secondary structure. Comparison of the kinetics of refolding of staphylococcal nuclease, monitored by FRET, and for a proline-free variant, indicate that folding occurs via two partially folded intermediates leading to a native-like species with one (or more) proline residues in a non-native conformation. For the A states an excellent correlation between compactness measured by FRET, and compactness determined from small-angle X-ray scattering, was observed. Further, a linear relationship between compactness and free energy of unfolding was noted. Formation of soluble aggregates of the A states led to dramatic enhancement of the FRET, consistent with intermolecular fluorescence energy transfer.  相似文献   

19.
The secondary structure formed in disulfide reduced alpha-lactalbumin is investigated by CD spectrum and is compared with that of the folding intermediate of the disulfide intact protein. The peptide backbone structure of the reduced protein depends strongly on salt concentration in contrast to that of the intermediate. It is close to a random coil in the absence of salt, but it is almost the same as that of the intermediate at a high concentration of salt. The secondary structures of both the proteins undergo broad unfolding transitions when temperature is raised or when urea is added. The secondary structure of the reduced protein is less stable against both heat and urea. These results show that the disulfide bonds are not a determinant of the secondary structure formed at an early stage of folding, and they stabilize the secondary structure of the folding intermediate.  相似文献   

20.
Rat intestinal fatty acid binding protein (IFABP) displays an intermediate with little if any secondary structure during unfolding, while the structurally homologous rat ileal lipid binding protein (ILBP) displays an intermediate during unfolding with nativelike secondary structure. Double-jump experiments indicate that these intermediates are on the folding path for each protein. To test the hypothesis that differences in the number of buried hydrophobic atoms in a folding initiating site are responsible for the different types of intermediates observed for these proteins, two mutations (F68C-IFABP and C69F-ILBP) were made that swapped a more hydrophobic residue for a more hydrophilic residue in the respective cores of these two proteins. F68C-IFABP followed an unfolding path identical to that of WT-ILBP with an intermediate that showed nativelike secondary structure, whereas C69F-ILBP followed an unfolding path that was identical to that of WT-IFABP with an intermediate that lacked secondary structure. Further, a hydrophilic residue was introduced at an identical hydrophobic structural position in both proteins (F93S-IFABP and F94S-ILBP). Replacement of phenylalanine with serine at this site led to the appearance of an intermediate during refolding that lacked secondary structure for both proteins that was not detected for either parental protein. Altering the chemical characteristics and/or size of residues within an initiating core of hydrophobic interactions is critical to the types of intermediates that are observed during the folding of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号