首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Histone dynamics in living cells revealed by photobleaching   总被引:5,自引:0,他引:5  
Kimura H 《DNA Repair》2005,4(8):939-950
  相似文献   

2.
Although reversible chemistry is crucial to dynamical processes in living cells, relatively little is known about relevant chemical kinetic rates in vivo. Total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP), an established technique previously demonstrated to measure reversible biomolecular kinetic rates at surfaces in vitro, is extended here to measure reversible biomolecular kinetic rates of actin at the cytofacial (subplasma membrane) surface of living cells. For the first time, spatial imaging (with a charge-coupled device camera) is used in conjunction with TIR/FRAP. TIR/FRAP imaging produces both spatial maps of kinetic parameters (off-rates and mobile fractions) and estimates of kinetic correlation distances, cell-wide kinetic gradients, and dependences of kinetic parameters on initial fluorescence intensity. For microinjected rhodamine actin in living cultured smooth muscle (BC3H1) cells, the unbinding rate at or near the cytofacial surface of the plasma membrane (averaged over the entire cell) is measured at 0.032 +/- 0.007 s(-1). The corresponding rate for actin marked by microinjected rhodamine phalloidin is very similar, 0.033 +/- 0.013 s(-1), suggesting that TIR/FRAP is reporting the dynamics of entire filaments or protofilaments. For submembrane fluorescence-marked actin, the intensity, off-rate, and mobile fraction show a positive correlation over a characteristic distance of 1-3 microm and a negative correlation over larger distances greater than approximately 7-14 microm. Furthermore, the kinetic parameters display a statistically significant cell-wide gradient, with the cell having a "fast" and "slow" end with respect to actin kinetics.  相似文献   

3.
Fluorescence recovery after photobleaching with an unmodified confocal laser scanning microscope (confocal FRAP) was used to determine the diffusion properties of network forming biological macromolecules such as aggrecan. The technique was validated using fluorescein isothiocyanate (FITC)-labeled dextrans and proteins (molecular mass 4-2000 kDa) at 25 degrees C and with fluorescent microspheres (207 nm diameter) over a temperature range of 5-50 degrees C. Lateral diffusion coefficients (D) were independent of the focus position, and the degree and extent of bleach. The free diffusion coefficient (Do) of FITC-aggrecan determined by confocal FRAP was 4.25 +/- 0.6 x 10(-8) cm2 s-1, which is compatible with dynamic laser light scattering measurements. It appeared to be independent of concentration below 2.0 mg/ml, but at higher concentrations (2-20 mg/ml) the self-diffusion coefficient followed the function D = Do(e)(-Bc). The concentration at which the self-diffusion coefficient began to fall corresponded to the concentration predicted for domain overlap. Multimolecular aggregates of aggrecan ( approximately 30 monomers) had a much lower free diffusion coefficient (Do = 6.6 +/- 1.0 x 10(-9) cm2 s-1) but showed a decrease in mobility with concentration of a form similar to that of the monomer. The method provides a technique for investigating the macromolecular organization in glycan-rich networks at concentrations close to those found physiologically.  相似文献   

4.
Lateral diffusion coefficients (D) of two surface differentiation antigens (sIgM and Bp35) were determined on interferon-sensitive (-IFs) or resistant (-IFr) Daudi cells by fluorescence photobleaching, using monospecific FITC-anti-IgM or PE-anti-Leu 16 probes. For untreated Daudi -IFs, mean (D) were 5.8 and 5.3 (x10(-10) cm2/sec). These increased, to 11 and 7.9 x 10(-10) cm2/sec (p less than 0.001) within 30 min after binding of recombinant IFN-a (80 to 800 U/10(6) cells), but decreased by up to 4-fold after Con A Mean (D) of identical surface antigens on Daudi-IFr were 8.2 and 9.4 x 10(-10) cm2/sec; and were not altered by IFN-a. Mean (D) of a lipid analog was up to 40-fold higher than for surface proteins and statistically identical in Daudi-IFs and Daudi-IFr. Rapid acceleration by IFN-a of surface protein lateral diffusion in Daudi-IFs obviously could facilitate anti-proliferative signal transduction; by contrast, a baseline increase of (D) in Daudi-IFr was evidently associated with their refractory state.  相似文献   

5.
The use of fluorescence recovery after photobleaching (FRAP) techniques to monitor the lateral mobility of plant lectin-receptor complexes on the surface of single, living mammalian cells is described in detail. FRAP measurements indicate that over 75% of the wheat germ agglutinin receptor (WGA-receptor) complexes on the surface of human embryo fibroblasts are mobile. These WGA-receptor complexes diffuse laterally (as opposed to flow) on the cell surface with a diffusion coefficient in the range of 2 × 10?11 to 2 × 10?10 cm2/sec. Both the percentage of mobile WGA-receptor complexes and the mean diffusion coefficient of these complexes are higher than that obtained from earlier FRAP measurements of the mobility of concanavalin A-receptor (Con A-receptor) complexes in a variety of cell types. The possible reasons for the differing mobilities of WGA and Con A receptors are discussed.  相似文献   

6.
Membrane fluidity of human cheek cells was determined using fluorescence recovery after photobleaching (FRAP) and steady-state fluorescence anisotropy. The FRAP data showed that the lateral diffusion coefficient (D) and mobile fraction (%R) of lipid in the plasma membrane of control cells were 2.01×10–9 cm2/ sec and 54.25%, respectively. Trypsin treatment increased D and %R to 6.4×10–9 cm2/sec and 72.15%. In contrast, the anisotropy (r) for control cells was 0.270 which remained unchanged by trypsin treatment. The results show that diffusion of lipids in the plane of the membrane is restricted by trypsin-sensitive barriers.  相似文献   

7.
The rate of exchange of tubulin that is incorporated into spindle microtubules with dimeric tubulin in the cytoplasm has been measured in sea urchin eggs by studying fluorescence redistribution after photobleaching (FRAP). Dichlorotriazinyl amino fluorescein (DTAF) has been used to label bovine brain tubulin. DTAF-tubulin has been injected into fertilized eggs of Lytechinus variegatus and allowed to equilibrate with the endogenous tubulin pool. Fluorescent spindles formed at the same time that spindles were seen in control eggs, and the injected embryos proceeded through many cycles of division on schedule, suggesting that DTAF-tubulin is a good analogue of tubulin in vivo. A microbeam of argon laser light has been used to bleach parts of the fluorescent spindles, and FRAP has been recorded with a sensitive video camera. Laser bleaching did not affect spindle structure, as seen with polarization optics, nor spindle function, as seen by rate of progress through mitosis, even when one spindle was bleached several times in a single cell cycle. Video image analysis has been used to measure the rate of FRAP and to obtain a low resolution view of the fluorescence redistribution process. The half-time for spindle FRAP is approximately 19 s, even when an entire half-spindle is bleached. Complete exchange of tubulin in nonkinetochore spindle and astral microtubules appeared to occur within 60-80 s at steady state. This rate is too fast to be explained by a simple microtubule end-dependent exchange of tubulin. Efficient microtubule treadmilling would be fast enough, but with current techniques we saw no evidence for movement of the bleached spot during recovery, which we would expect on the basis of Margolis and Wilson's model (Nature (Lond.)., 1981, 293:705)-- fluorescence recovers uniformly. Microtubules may be depolymerizing and repolymerizing rapidly and asynchronously throughout the spindle and asters, but the FRAP data are most compatible with a rapid exchange of tubulin subunits all along the entire lengths of nonkinetochore spindle and astral microtubules.  相似文献   

8.
One recent hypothesis for the mechanism of chromosome movement during mitosis predicts that a continual, uniform, poleward flow or "treadmilling" of microtubules occurs within the half-spindle between the chromosomes and the poles during mitosis (Margolis, R. L., and L. Wilson, 1981, Nature (Lond.), 293:705-711). We have tested this treadmilling hypothesis using fluorescent analog cytochemistry and measurements of fluorescence redistribution after photobleaching to examine microtubule behavior during metaphase of mitosis. Mitotic BSC 1 mammalian tissue culture cells or newt lung epithelial cells were microinjected with brain tubulin labeled with 5-(4,6-dichlorotriazin-2-yl) amino fluorescein (DTAF) to provide a fluorescent tracer of the endogenous tubulin pool. Using a laser microbeam, fluorescence in the half-spindle was photobleached in either a narrow 1.6 micron wide bar pattern across the half-spingle or in a circular area of 2.8 or 4.5 micron diameter. Fluorescence recovery in the spindle fibers, measured using video microscopy or photometric techniques, occurs as bleached DTAF-tubulin subunits within the microtubules are exchanged for unbleached DTAF-tubulin in the cytosol by steady-state microtubule assembly-disassembly pathways. Recovery of 75% of the bleached fluorescence follows first-order kinetics and has an average half-time of 37 sec, at 31-33 degrees C. No translocation of the bleached bar region could be detected during fluorescence recovery, and the rate of recovery was independent of the size of the bleached spot. These results reveal that, for 75% of the half-spindle microtubules, FRAP does not occur by a synchronous treadmilling mechanism.  相似文献   

9.
In the past few years, there has been remarkable progress in knowledge of the structures and organization of the protein complexes of photosynthetic membranes. However, static structures do not tell the whole story. Photosynthetic membranes, like other biological membranes, are dynamic systems. Recent technological advances are making it increasingly easy to probe the dynamics of photosynthetic membranes using fluorescence recovery after photobleaching. Here we explain the potential and the limitations of the technique.  相似文献   

10.
A theoretical formulation and experimental methodology are presented for a new multipoint analysis of membrane translational dynamics. The redistribution of fluorescent probe after a localized photobleaching pulse is monitored at several locations by a focused laser beam sequentially scanned through the bleached area. The spatial information so obtained provides a unique sensitivity to possible systematic flow and a direct internal calibration of the characteristic transport distance. These capabilities are demonstrated with experimental data on a reconstituted multibilayer system.  相似文献   

11.
Nagao I  Aoki Y  Tanaka M  Kinjo M 《The FEBS journal》2008,275(2):341-349
The nuage is a unique organelle in animal germ cells that is known as an electron-dense amorphous structure in the perinuclear region. Although the nuage is essential for primordial germ cell (PGC) determination and development, its roles and functions are poorly understood. Herein, we report an analysis of the diffusion properties of the olvas gene product of the medaka fish (Oryzias lapites) in PGCs prepared from embryos, using fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Olvas-green fluorescent protein (GFP) localized in granules thought to be nuages, and exhibited a constraint movement with two-component diffusion constants of 0.15 and 0.01 microm(2).s(-1). On the other hand, cytosolic Olvas-GFP was also observed to have a diffusion movement of 7.0 microm(2).s(-1). Interestingly, Olvas-GFP could be expressed in HeLa cells, and formed granules that were similar to nuages in medaka PGCs. Olvas-GFP also exhibited a constraint movement in the granules and diffused in the cytosol of HeLa cells, just as in the medaka embryo. The other two gene products, Nanos and Tudor of the medaka, which are known as constituents of the nuage, could also be expressed in HeLa cells and formed granules that colocalized with Olvas-GFP. Nanos-GFP and Tudor-GFP exhibited constraint movement in the granules and diffused in the cytosol of HeLa cells. These results suggest that these granules in the HeLa cell are not simple aggregations or rigid complexes, but dynamic structures consisting of several proteins that shuttle back and forth between the cytosol and the granules.  相似文献   

12.
13.
Transgenic tobacco (Nicotiana tabacum) was studied to localize the activity of phloem loading during development and to establish whether the endoplasmic reticulum (ER) of the companion cell (CC) and the sieve element (SE) reticulum is continuous by using a SUC2 promoter-green fluorescent protein (GFP) construct targeted to the CC-ER. Expression of GFP marked the collection phloem in source leaves and cotyledons as expected, but also the transport phloem in stems, petioles, midveins of sink leaves, nonphotosynthetic flower parts, roots, and newly germinated seedlings, suggesting that sucrose retrieval along the pathway is an integral component of phloem function. GFP fluorescence was limited to CCs where it was visualized as a well-developed ER network in close proximity to the plasma membrane. ER coupling between CC and SEs was tested in wild-type tobacco using an ER-specific fluorochrome and fluorescence redistribution after photobleaching (FRAP), and showed that the ER is continuous via pore-plasmodesma units. ER coupling between CC and SE was quantified by determining the mobile fraction and half-life of fluorescence redistribution and compared with that of other cell types. In all tissues, fluorescence recovered slowly when it was rate limited by plasmodesmata, contrasting with fast intracellular FRAP. FRAP was unaffected by treatment with cytochalasin D. The highest degree of ER coupling was measured between CC and SE. Intimate ER coupling is consistent with a possible role for ER in membrane protein and signal exchange between CC and SE. However, a complete lack of GFP transfer between CC and SE indicated that the intraluminal pore-plasmodesma contact has a size exclusion limit below 27 kD.  相似文献   

14.
The evaluation of lateral diffusion coefficients of membrane components by the technique of fluorescence recovery after photobleaching (FRAP) is often complicated by uncertainties in the values of the intensities F(O), immediately after bleaching, and F(infinity), after full recovery. These uncertainties arise from instrumental settling time immediately after bleaching and from cell, tissue, microscope, or laser beam movements at the long times required to measure F(infinity). We have developed a method for precise analysis of FRAP data that minimizes these problems. The method is based on the observation that a plot of the reciprocal function R(tau) = F(infinity)/[F(infinity)-F(tau)] is linear over a large time range when (a) the laser beam has a Gaussian profile, (b) recovery involves a single diffusion coefficient, and (c) there is no membrane flow. Moreover, the ratio of intercept to slope of the linear plot is equal to tau 1/2, the time required for the bleached fluorescence to rise to 50% of the full recovery value, F(infinity). The lateral diffusion coefficient D is related to tau 1/2 by tau 1/2 = beta w2/4D where beta is a defined parameter and w is the effective radius of the focused laser beam. These results are shown to indicate that the recovery of fluorescence F(tau) can be represented over a large range of percent bleach, and recovery time tau by the relatively simple expression F(tau) = [ F(o) + F(infinity) (tau/tau 1/2)]/[1 + tau/tau 1/2)]. FRAP data can therefore be easily evaluated by a nonlinear regression analysis with this equation or by a linear fit to the reciprocal function R(tau). It is shown that any error in F(infinity) can be easily detected in a plot of R(tau) vs. tau which deviates significantly from a straight line when F(infinity) is in error by as little as 5%. A scheme for evaluating D by linear analysis is presented. It is also shown that the linear reciprocal plot provides a simple method for detecting flow or multiple diffusion coefficients and for establishing conditions (data precision, differences in multiple diffusion coefficients, magnitude of flow rate compared to lateral diffusion) under which flow or multiple diffusion coefficients can be detected. These aspects are discussed in some detail.  相似文献   

15.
We have investigated spatial variations of the diffusion behavior of the green fluorescent protein mutant EGFP (F64L/S65T) and of the EGFP-beta-galactosidase fusion protein in living cells with fluorescence correlation spectroscopy. Our fluorescence correlation spectroscopy device, in connection with a precision x-y translation stage, provides submicron spatial resolution and a detection volume smaller than a femtoliter. The fluorescence fluctuations in cell lines expressing EGFP are caused by molecular diffusion as well as a possible internal and a pH-dependent external protonation process of the EGFP chromophore. The latter processes result in two apparent nonfluorescent states that have to be taken into account when evaluating the fluorescence correlation spectroscopy data. The diffusional contribution deviates from ideal behavior and depends on the position in the cell. The fluorescence correlation spectroscopy data can either be evaluated as a two component model with one fraction of the molecules undergoing free Brownian motion with a diffusion coefficient approximately five times smaller than in aqueous solution, and another fraction diffusing one or two orders of magnitude slower. This latter component is especially noticeable in the nuclei. Alternatively, we can fit the data to an anomalous diffusion model where the time dependence of the diffusion serves as a measure for the degree of obstruction, which is large especially in nuclei. Possible mechanisms for this long tail behavior include corralling, immobile obstacles, and binding with a broad distribution of binding affinities. The results are consistent with recent numerical models of the chromosome territory structure in the cell nucleus.  相似文献   

16.
17.
T E Kreis  B Geiger  J Schlessinger 《Cell》1982,29(3):835-845
Rhodamine-labeled actin microinjected into living embryonic chicken gizzard cells became associated with its characteristic cytoskeletal structures. In these domains the translational diffusion coefficients (D) of rh-actin were determined in vivo by fluorescence photobleaching recovery (FPR) measurements. Two classes of actin molecules with respect to its mobilities were detected: rh-actin with a half-time of recovery of 5-10 min in stress fibers and focal contacts (immobile on the time-scale of FPR measurements) and rh-actin with D = 2-3 X 10(-9) cm2/sec in the cytoplasm and leading lamellae. The slow recovery on stress fibers exhibited similar kinetics whether a short segment or the entire structure were photobleached, indicating that recovery occurs predominantly by exchange with the surrounding diffusable actin. We propose that a steady-state equilibrium between the soluble and cytoskeletal pool of actin exists in living cells.  相似文献   

18.
Reduced nicotine adenine dinucleotide (NADH) is a key metabolite involved in cellular energy conversion and many redox reactions. We describe the use of confocal microscopy in conjunction with enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH as a topological assay of NADH generation capacity within living cardiac myocytes. Quantitative validation of this approach was performed using a dehydrogenase system, in vitro. In intact cells the NADH ED-FRAP was sensitive to temperature (Q(10) of 2.5) and to dehydrogenase activation by dichloroacetate or cAMP (twofold increase for each). In addition, NADH ED-FRAP was correlated with flavin adenine dinucleotide (FAD(+)) fluorescence. These data, coupled with the cellular patterns of NADH ED-FRAP changes with dehydrogenase stimulation, suggest that NADH ED-FRAP is localized to the mitochondria. These results suggest that ED-FRAP enables measurement of regional dynamics of mitochondrial NADH production in intact cells, thus providing information regarding region-specific intracellular redox reactions and energy metabolism.  相似文献   

19.
Perfringolysin O is a thiol-activated cytolytic exotoxin the primary receptor of which is the membrane cholesterol on the cell surface. The effect of perfringolysin O was tested in various hepatocyte preparations. (i) Smears of fresh liver exposed to a mild H2O2 (1.0 mM) injury for 10 min at 37 degrees C, develop a 'peroxide-induced autofluorescence' (PIAF) on the membrane proteins. PIAF is suitable for measuring the average lateral diffusion constant (D) of the membrane proteins by means of fluorescence recovery after photobleaching technique (FRAP). Incubation for 5 min with 600 or 2000 units/ml of the perfringolysin O resulted in a significant increase (32 and 46%, respectively) of D as compared to the controls of the same age group (13-14 months). Various tests like heat denaturation of cholesterol saturation of perfringolysin O before its application as well as thiol-activation of the smears with dithiothreitol revealed that the increase of D is a specific toxin effect due mot probably to the reaction of perfringolysin O with cholesterol. (ii) Isolated hepatocytes were exposed to perfringolysin O and their viability as well as the release of two cytosolic enzymes (lactate dehydrogenase and glutamic-pyruvic transaminase) were measured; 40-60 units/ml of perfringolysin O in 30 min reduced the viability of the hepatocytes to zero and caused a release of about 70% of both cytosolic enzymes. The significance of the results is discussed from the points of view of both the toxin-effect and the FRAP method.  相似文献   

20.
It has not been possible to measure diffusion deep in solid tissues such as tumors because of the limited light penetration of conventional optical techniques. Here we report a microfiberoptic epifluorescence photobleaching (MFEP) method in which photobleaching is done by laser epi-illumination through a multimode fiberoptic whose micron-sized tip can be introduced deep into tissues. We applied MFEP to measure the diffusion of fluorescent macromolecules in tumors in living mice, at depths well beyond those accessible by surface optical measurements. Macromolecule diffusion was slowed about twofold within 200 microm of the surface of a solid tumor, but was slowed greater than tenfold beyond 500 microm. Our results reveal a remarkable and previously unrecognized slowing of diffusion deep in tumors, which correlated with the differing tissue architectures of tumor periphery versus core, and with altered tumor vasculature produced by aquaporin-1 deletion. MFEP should have wide applications for measuring diffusion in organs, solid tumors and other light-inaccessible tissue masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号