首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Green sulfur bacteria are obligate anaerobic phototrophs, which in addition to outer and plasma membranes contain chlorosomes. The analysis of the membrane proteome of Chlorobium tepidum from chlorosome-depleted membranes is described in this study. The membranes were purified by sucrose density centrifugation and characterized by 1-DE and 2-DE coupled with MS, absorption spectroscopy, and electron microscopy. 1-DE and 2-DE were employed to analyze the membrane proteins and to characterize the capabilities of the methods. Solubilization of the membrane proteins prior to 2-DE was improved by using a series of zwitterionic detergents. Based on the resolved spots after 2-DE, the combination of amidosulfobetaine 14 with Triton X-100 is more efficient than the combination of CHAPS, N-decyl-N,N-dimethyl-3-ammonio-1-propane sulfonate, and Triton X-100. From the application of 1-DE and 2-DE, 167 and 202 unique proteins were identified, respectively, using PMF by MALDI-TOF MS. Both methods resulted in the detection of 291 different proteins of which only 88 were predicted membrane proteins, indicating the limitation of membrane protein detection after separation with electrophoresis methods. In addition, 53 of these proteins were identified as outer membrane proteins.  相似文献   

3.
The csmB gene, encoding the 7.5-kDa “Gerola-Olson” protein of chlorosomes, has been cloned and sequenced from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Two potential start codons were identified, and the csmB gene may be translated into a preprotein with an amino-terminal extension. Two forms of the mature CsmB protein (74 or 75 amino acids in length) were identified that differ by the presence or absence of a methionine residue at the amino terminus. The csmB gene of Chl. tepidum is transcribed as an abundant monocistronic mRNA of approximately 350 nucleotides; primer extension mapping of the 5′ endpoint of the csmB mRNA suggests there is strong similarity between the csmB promoter and the σ70 promoters of Escherichia coli. The CsmB protein of Chl. tepidum was overproduced as a histidine-tagged fusion protein in E. coli, purified to homogeneity by Ni2+ chelation affinity chromatography, and used to raise polyclonal antibodies in rabbits. Protease susceptibility mapping and agglutination experiments with isolated chlorosomes using anti-CsmB antibodies indicate that the CsmB protein is a component of the chlorosome envelope. Received: 28 May 1996 / Accepted: 17 July 1996  相似文献   

4.
The gene encoding malate dehydrogenase (MDH) from Chloroflexus aurantiacus was cloned, sequenced, and analyzed. The mdh gene corresponded to a polypeptide of 309 amino acids with a molecular mass of 32,717 Da. The primary structure and the coenzyme-binding domain showed a high degree of similarity to lactate dehydrogenase (LDH), whereas the conserved amino acids that participate in substrate binding were those typical of MDHs. Using PCR techniques, the mdh gene was cloned in the expression vector pET11a, and large amounts of active C. aurantiacus MDH were produced in Escherichia coli after induction with isopropyl β-d-thiogalactoside. The expressed enzyme thus obtained was purified and retained full activity at 55° C. High levels of expression of mdh were also observed when the gene and its flanking sequences were cloned into pUC18/19, indicating that the putative σ70 promoter sequences found upstream of the C. aurantiacus mdh functioned in E. coli. When these sequences were deleted, the expression in E. coli was reduced dramatically. Received: 24 October 1995 / Accepted: 23 February 1996  相似文献   

5.
Thermophilic green sulfur bacteria of the genus Chlorobium were isolated from certain acidic high sulfide New Zealand hot springs. Cells were Gram-negative nonmotile rods of variable length and contained bacteriochlorophyll c and chlorosomes. Cultures of thermophilic chlorobia grew only under anaerobic, phototrophic conditions, either photoautotrophically or photoheterotrophically. The optimum growth temperature for the strains of thermophilic green sulfur bacteria isolated was 47–48°C with generation times of about 2 h being observed. The upper temperature limit for growth was about 52°C. Thiosulfate was a major electron donor for photoautotrophic growth while sulfide alone was only poorly used. N2 fixation was observed at 48°C and cell suspensions readily reduced acetylene to ethylene. The G+C content of DNA from strains of thermophilic chlorobia was 56.5–58.2 mol% and the organisms positioned phylogenetically within the green sulfur bacterial branch of the domain Bacteria. The new phototrophs are described as a new species of the genus Chlorobium, Chlorobium tepidum.This paper is dedicated to Professor Norbert Pfennig on the occasion of his 65th birthday  相似文献   

6.
We have isolated the water-soluble BChla-protein (FMO-protein) from the greer sulfur bacteriumChlorobium tepidum by a new procedure involving a salt-wash of isolated membranes at alkaline pH. The absorption spectrum of the isolated FMO-protein at 77 K was compared with that of a reaction-center complex containing the FMO-protein (FMO-RC complex) isolated fromC. tepidum following the procedure of Feiler U, Nitsche W and Michel H (1992) Biochemistry 31: 2608–2614. Oxidation or illumination of the FMO-RC complex caused bleaching of a component with a maximum at 836 nm which was not present in the purified FMO-protein.  相似文献   

7.
The structure of the chlorosome baseplate protein CsmA from Chlorobium tepidum in a 1:1 chloroform:methanol solution was determined using liquid-state NMR spectroscopy. The data reveal that the 59-residue protein is predominantly alpha-helical with a long helical domain extending from residues V6 to L36, containing a putative bacteriochlorophyll a binding domain, and a short helix in the C-terminal part extending from residues M41 to G49. These elements are compatible with a model of CsmA having the long N-terminal alpha-helical stretch immersed into the lipid monolayer confining the chlorosome and the short C-terminal helix protruding outwards, thus available for interaction with the Fenna-Matthews-Olson antenna protein.  相似文献   

8.
In this study, we performed the first large-scale identification of N-terminal peptides from the green sulfur bacterium Chlorobaculum tepidum. Combined fractional diagonal chromatography (COFRADIC) was used to isolate protein N-terminal peptides from three different proteome preparations, and following LC-MS/MS analysis, over 621 different proteins were identified by their N-terminal peptides. Our data constitute the largest data set currently available for protein N-termini of prokaryotic photosynthetic organisms.  相似文献   

9.
The transfer of excitation energy and the pigment arrangement in isolated chlorosomes of the thermophilic green bacterium Chloroflexus aurantiacus were studied by means of absorption, fluorescence and linear dichroism spectroscopy, both at room temperature and at 4 K. The low temperature absorption spectrum shows bands of the main antenna pigments BChl c and carotenoid, in addition to which bands of BChl a are present at 798 and 613 nm. Fluorescence measurements showed that excitation energy from BChl c and carotenoid is transferred to BChl a, which presumably functions as an intermediate in energy transfer from the chlorosome to the cytoplasmic membrane. Measurements of fluorescence polarization and the use of two different orientation techniques for linear dichroism experiments enabled us to determine the orientation of several transition dipole moments with respect to each other and to the three principal axes of the chlorosome. The Qy transition of BChl a is oriented almost perfectly perpendicular to the long axis of the chlorosome. The Qy transition of BChl c and the -carotene transition dipole are almost parallel to each other. They make an angle of about 40° with the long axis and of about 70° with the short axis of the chlorosome; the angle between these transitions and the BChl a Qy transition is close to the magic angle (55°).Abbreviations BChl bacteriochlorophyll - CD circular dichroism - LD linear dichroism Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

10.
A mutant devoid of cytochrome c-554 (CT0075) in Chlorobium tepidum (syn. Chlorobaculum tepidum) exhibited a decreased growth rate but normal growth yield when compared to the wild type. From quantitative determinations of sulfur compounds in media, the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to sulfate as the wild type. This indicates that cytochrome c-554 would increase the rate of thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for thiosulfate oxidation itself. On the other hand, mutants in which a portion of the soxB gene (CT1021) was replaced with the aacC1 cassette did not grow at all in a medium containing only thiosulfate as an electron source. They exhibited partial growth yields in media containing only sulfide when compared to the wild type. This indicates that SoxB is not only essential for thiosulfate oxidation but also responsible for sulfide oxidation. An alternative electron carrier or electron transfer path would thus be operating between the Sox system and the reaction center in the mutant devoid of cytochrome c-554. Cytochrome c-554 might function in any other pathway(s) as well as the thiosulfate oxidation one, since even green sulfur bacteria that cannot oxidize thiosulfate contain a cycA gene encoding this electron carrier.  相似文献   

11.
Flash-induced optical kinetics at room temperature of cytochrome (Cyt) c 551 and an Fe-S center (CFA/CFB) bound to a purified reaction center (RC) complex from the green sulfur photosynthetic bacterium Chlorobium tepidum were studied. At 551 nm, the flash-induced absorbance change decayed with a t 1/2 of several hundred ms, and the decay was accelerated by 1-methoxy-5-methylphenazinium methyl sulfate (mPMS). In the blue region, the absorbance change was composed of mPMS-dependent (Cyt) and mPMS-independent component (CFA/CFB) which decayed with a t 1/2 of 400–650 ms. Decay of the latter was effectively accelerated by benzyl viologen (Em –360 mV) and methyl viologen (–440 mV), and less effectively by triquat (–540 mV). The difference spectrum of Cyt c had negative peaks at 551, 520 and 420 nm, with a positive rise at 440 to 500 nm. The difference spectrum of CFA/CFB resembled P430 of PSI, and had a broad negative peak at 430435 nm.Abbreviations (B)Chl (bacterio)chlorophyll - Cyt cytochrome - FA, FB and FX iron-sulfur center A, B and X of Photosystem I - CFA, CFB and CFX FA-,FB- and FX-like Fe-S center of Chlorobium - mPMS 1-methoxy-5-methylphenazinium methyl sulfate - PSI Photosystem I - RC reaction center  相似文献   

12.
A new and rapid procedure has been developed for the isolation of the bacteriochlorophyll a-containing Fenna—Matthews—Olson (FMO)-protein from green sulfur bacteria. Polyclonal antibodies raised against the FMO-protein of Chlorobium (Chl.) tepidum were employed in the preparation of an antibody column utilizing immobilized protein A as the matrix. The antibody column afforded essentially a one-step purification process, resulting in preparations that were free from contaminating pigments and proteins. This was evidenced by absorption spectroscopy, SDS—PAGE, and fluorescence emission.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
The complete carotenoid composition of the thermophilic green sulfur bacterium Chlorobium tepidum strain TNO was determined by spectroscopic methods. Major carotenoids were four kinds of carotenes: γ-carotene, chlorobactene, and their 1′,2′-dihydro derivatives (1′,2′-dihydro-γ-carotene and 1′,2′-dihydrochlorobactene). In lesser amounts, hydroxyl γ-carotene, hydroxyl chlorobactene, and their glucoside fatty acid esters were found. The only esterified fatty acid present was laurate, and OH-chlorobactene glucoside laurate is a novel carotenoid. In other strains of C. tepidum, the same carotenoids were found, but the composition varied from strain to strain. The overall pigment composition in cells of strain TNO was 4 mol carotenoids and 40 mol bacteriochlorophyll c per mol bacteriochlorophyll a. The effects of nicotine on carotenoid biosynthesis in C. tepidum differed from those in the thermophilic green nonsulfur bacterium Chloroflexus aurantiacus. Received: 3 February 1997 / Accepted: 6 June 1997  相似文献   

14.
We have studied the pigment arrangement in purified cytoplasmic membranes of the thermophilic green bacterium Chloroflexus aurantiacus. The membranes contain 30–35 antenna bacteriochlorophyll a molecules per reaction center; these are organized in the B808–866 light-harvesting complex, together with carotenoids in a 2:1 molar ratio. Measurements of linear dichroism in a pressed polyacrylamide gel permitted the accurate determination of the orientation of the optical transition dipole moments with respect to the membrane plane. Combination of linear dichroism and low temperature fluorescence polarization data shows that the Qy transitions of the BChl 866 molecules all lie almost perfectly parallel to the membrane plane, but have no preferred orientation within the plane. The BChl 808 Qy transitions make an average angle of about 44° with this plane. This demonstrates that there are clear structural differences between the B808–866 complex of C. aurantiacus and the B800–850 complex of purple bacteria. Excitation energy transfer from carotenoid to BChl a proceeds with about 40% efficiency, while the efficiency of energy transfer from BChl 808 to BChl 866 approaches 100%. From the minimal energy transfer rate between the two spectral forms of BChl a, obtained by analysis of low temperature fluorescence emission spectra, a maximal distance between BChl 808 and BChl 866 of 23 was derived.Abbreviations BChl bacteriochlorophyll - BPheo bacteriopheophytin - CD circular dichroism - LD linear dichroism - Tris Tris(hydroxymethyl)aminomethane  相似文献   

15.
Spectrally pure reaction center preparations from Chloroflexus aurantiacus have been obtained in a stable form; however, the product contained several contaminating polypeptides. The reaction center pigment molecules (probably three bacteriochlorophyll a and three bacteriopheophytin a molecules) are associated with two polypeptides (Mr = 30000 and 28000) in a reaction center complex of Mr = 52000. No carotenoid is present in the complex. These data together with previous spectral data suggest that the Chloroflexus reaction center represents a more primitive evolutionary form of the purple bacterial reaction center, and that it has little if any relationship to the green bacterial component. A reaction center preparation from Rhodopseudomonas sphaeroides R26 was fully denatured at 50°C while the Chloroflexus reaction center required higher temperatures (70–75°C) for complete denaturation. Thus, an intrinsic membrane protein of a photosynthetic thermophile has been demonstrated to have greater thermal stability than the equivalent component of a mesophile.  相似文献   

16.
The membrane-bound photooxidizable cytochrome c-554 from Chloroflexus aurantiacus has been purified. The purified protein runs as a single heme staining band on SDS-PAGE with an apparent molecular mass of 43 000 daltons. An extinction coefficient of 28 ± 1 mM–1 cm–1 per heme at 554 nm was found for the dithionite-reduced protein. The potentiometric titration of the hemes takes place over an extended range, showing clearly that the protein does not contain a single heme in a well-defined site. The titration can be fit to a Nernst curve with midpoint potentials at 0, +120, +220 and +300 mV vs the standard hydrogen electrode. Pyridine hemochrome analysis combined with a Lowry protein assay and the SDS-PAGE molecular weight indicates that there are a minimum of three, and probably four hemes per peptide. Amino acid analysis shows 5 histidine residues and 29% hydrophobic residues in the protein. This cytochrome appears to be functionally similar to the bound cytochrome from Rhodopseudomonas viridis. Both cytochrome c-554 from C. aurantiacus and the four-heme cytochrome c-558-553 from R. viridis appear to act as direct electron donors to the special bacteriochlorophyll pair of the photosynthetic reaction center. They have a similar content of hydrophobic amino acids, but differ in isoelectric point, thermodynamic characteristics, spectral properties, and in their ability to be photooxidized at low temperature.Abbreviations LDAO lauryl dimethyl amine-N-oxide - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - mV millivolt - Em.8 midpoint potential at pH 8.0 - ODV optical density x volume in ml  相似文献   

17.
We have shown that the green sulfur bacterium Chlorobium tepidum can be grown in batch culture supplemented with potentially toxic fatty alcohols without a major effect on the growth rate if the concentration of the alcohols is kept low either by programmed addition or by adding the alcohol as an inclusion complex with -cyclodextrin. HPLC and GC analysis of pigment extracts from the supplemented cells showed that the fatty alcohols were incorporated into bacteriochlorophyll c as the esterifying alcohol. It was possible to change up to 43% of the naturally occurring farnesyl ester of bacteriochlorophyll c with the added alcohol. This change in the homolog composition had no effect on the spectral properties of the cells when farnesol was partially replaced by stearol, phytol or geranylgeraniol. However, with dodecanol we obtained a blue-shift of 6 nm of the Qy band of the bacteriochlorophyll c and a concomitant change in the fluorescence emission was observed. The possible significance of these findings is discussed in the light of current ideas about bacteriochlorophyll organization in the chlorosomes.Abbreviations -CD -cyclodextrin - BChl bacteriochlorophyll - BChl c H bacteriochlorophyllide c - [E,M] BChl c F 8-ethyl, 12-methyl, farnesyl BChl c - [E,E] BChl c F 8-ethyl, 12-ethyl, farnesyl BChl c - [P,E] BChl c F 8-propyl, 12-ethyl, farnesyl BChl c - [I,E] BChl c F 8-isobutyl, 12-ethyl, farnesyl BChl c - Car carotenoids  相似文献   

18.
Soluble cytochrome c-554 (M r 10 kDa) is purified from the green sulfur bacterium Chlorobium tepidum. Its midpoint redox potential is determined to be +148 mV from redox titration at pH 7.0. The kinetics of cytochrome c-554 oxidation by a purified reaction center complex from the same organism were studied by flash absorption spectroscopy at room temperature, and the results indicate that the reaction partner of cytochrome c-554 is cytochrome c-551 bound to the reaction center rather than the primary donor P840. The second-order rate constant for the electron donation from cytochrome c-554 to cytochrome c-551 was estimated to be 1.7×107 M–1 s–1. The reaction rate was not significantly influenced by the ionic strength of the reaction medium.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

19.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

20.
The transfer of excitation energy in intact cells of the thermophilic green photosynthetic bacterium Chloroflexus aurantiacus was studied both at low temperature and under more physiological conditions. Analysis of excitation spectra measured at 4K indicates that the minor fraction of bacteriochlorophyll a present in the chlorosome functions as an intermediate in energy transfer between the main light-harvesting pigment BChl c and the membrane-bound B808-866 antenna complex. This supports the hypothesis that BChl a is associated with the base plate which connects the chlorosome with the membrane. The overall efficiency for energy transfer from the chlorosome to the membrane is only 15% at 4K. High efficiencies of close to 100% are observed above 40°C near the temperature where the cultures are grown. Cooling to 20°C resulted in a sudden drop of the transfer efficiency which appeared to originate in the chlorosome. This decrease may be related to a lipid phase transition. Further cooling mainly affected the efficiency of transfer between the chlorosome and the membrane. This effect can only partially be explained by a decreased Förster overlap between the chlorosomal BChl a and BChl a 808 associated with the membrane-bound antenna system. The temperature dependence of the fluorescence yield of BChl a 866 also appeared to be affected by lipid phase transitions, suggesting that this fluorescence can be used as a native probe of the physical state of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号