首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochromes c are characterized by the presence of a protoporphyrin IX group covalently attached to the polypeptide via one or two thioether bonds to Cys side chains. The heme attachment process, known as cytochrome c maturation, occurs posttranslationally in the periplasm (for bacterial cytochromes c) or in the mitochondrial intermembrane space (for eukaryotic cytochromes c) through a pathway dependent on the organism. It is demonstrated in this work that a mitochondrial cytochrome c expressed in Escherichia coli that undergoes maturation under control of the E. coli cytochrome c maturation factors achieves a native-like structure and stability. The recombinant protein is characterized spectroscopically (by circular dichroism (CD), absorption, and nuclear magnetic resonance (NMR) spectroscopy) and it is verified that the heme and its environment are indistinguishable from authentic horse cytochrome c. Mass spectrometry reveals that the recombinant protein is not acetylated at the N terminus, however, no significant effect on protein structure or stability is detected as a result.  相似文献   

2.
Stability and apoptotic activity of recombinant human cytochrome c   总被引:1,自引:0,他引:1  
An efficient system for producing human cytochrome c variants is important to help us understand the roles of this protein in biological processes relevant to human diseases including apoptosis and oxidative stress. Here, we describe an Escherichia coli expression system for producing recombinant human cytochrome c. We also characterize the structure, stability, and function of the protein and show its utility for studying apoptosis. Yields of greater than 8 mg of pure protein per liter culture were attained. Circular dichroism spectropolarimetry studies show that the secondary and tertiary structures of the human protein are nearly identical to those of the horse protein, but the human protein is more stable than other eukaryotic cytochromes c. Furthermore, recombinant human cytochrome c is capable of inducing caspase-3 activity in a cell-free caspase activation assay. We use data from this assay along with data from the literature to define the apaf-1 binding site on human cytochrome c.  相似文献   

3.
We describe the design of Escherichia coli cells that synthesize a structurally perfect, recombinant cytochrome c from the Thermus thermophilus cytochrome c552 gene. Key features are (1) construction of a plasmid-borne, chimeric cycA gene encoding an Escherichia coli-compatible, N-terminal signal sequence (MetLysIleSerIleTyrAlaThrLeu AlaAlaLeuSerLeuAlaLeuProAlaGlyAla) followed by the amino acid sequence of mature Thermus cytochrome c552; and (2) coexpression of the chimeric cycA gene with plasmid-borne, host-specific cytochrome c maturation genes (ccmABCDEFGH). Approximately 1 mg of purified protein is obtained from 1 L of culture medium. The recombinant protein, cytochrome rsC552, and native cytochrome c552 have identical redox potentials and are equally active as electron transfer substrates toward cytochrome ba3, a Thermus heme-copper oxidase. Native and recombinant cytochromes c were compared and found to be identical using circular dichroism, optical absorption, resonance Raman, and 500 MHz 1H-NMR spectroscopies. The 1.7 A resolution X-ray crystallographic structure of the recombinant protein was determined and is indistinguishable from that reported for the native protein (Than, ME, Hof P, Huber R, Bourenkov GP, Bartunik HD, Buse G, Soulimane T, 1997, J Mol Biol 271:629-644). This approach may be generally useful for expression of alien cytochrome c genes in E. coli.  相似文献   

4.
All the lysines of horse heart cytochrome c were maleylated yielding a low spin product. At room temperature and low salt concentration, this product lacked the 695 nm absorption band and showed tryptophan fluorescence and circular dichroic spectra typical of denatured cytochrome c. The 695 nm band and the native tryptophan fluorescence and circular dichroic spectra were restored by addition of salts, their effectiveness being dependent on the charge of the cation. On low salt concentration, the 695 nm band was also restored by lowering the temperature. Studies of the temperature dependence of the 695 nm band indicate that the thermal denaturation of maleylated cytochrome c occurs at temperatures 60-70 degrees C lower than in the native protein. This implies a destabilization of the native conformation by 5.6 kcal/mol; a similar value is evidenced by comparative urea denaturation studies on the native and modified proteins. The results confirm the assumption that the native conformation of cytochrome c is mostly determined by interactions involving internal residues.  相似文献   

5.
Nuclear magnetic resonance spectroscopy is employed to characterize unfolding intermediates and the denatured state of horse ferricytochrome c in guanidine hydrochloride. Unfolded and partially unfolded species with non-native heme ligation are detected by analysis of hyperfine-shifted (1)H resonances. Two equilibrium unfolding intermediates with His-Lys heme axial ligation are detected, as are two unfolded species with bis-His heme ligation. These results are contrasted with previous results on horse ferricytochrome c denaturation by urea, for which only one unfolding intermediate and one unfolded species were detected by NMR spectroscopy. Urea and guanidine hydrochloride are often used interchangeably in protein denaturation studies, but these results and those of others indicate that unfolded and intermediate states in these two denaturants may have substantially different properties. Implications of these results for folding studies and the biological function of mitochondrial cytochromes c are discussed.  相似文献   

6.
The bacterial cytochrome c peroxidase (BCCP) from Rhodobacter capsulatus was purified as a recombinant protein from an Escherichia coli clone over-expressing the BCCP structural gene. BCCP from Rb. capsulatus oxidizes the Rhodobacter cytochrome c2 and reduces hydrogen peroxide, probably functioning as a detoxification mechanism. The enzyme binds two haem c groups covalently. The gene encoding BCCP from Rb. capsulatus was cloned through the construction of a 7-kb subgenomic clone. In comparison with the protein sequence, the sequence deduced from the gene has a 21-amino-acid N-terminal extension with the characteristics of a signal peptide. The purified recombinant enzyme showed the same physico-chemical properties as the native enzyme. Spectrophotometric titration established the presence of a high-potential (Em=+270 mV) and a low-potential haem (between -190 mV and -310 mV) as found in other BCCPs. The enzyme was isolated in the fully oxidized but inactive form. It binds calcium tightly and EGTA treatment of the enzyme was necessary to show calcium activation of the mixed valence enzyme. This activation is associated with the formation of a high-spin state at the low-potential haem. BCCP oxidizes horse ferrocytochrome c better than the native electron donor, cytochrome c2; the catalytic activities ('turnover number') are 85 800 min(-1) and 63 600 min(-1), respectively. These activities are the highest ever found for a BCCP.  相似文献   

7.
Cytochrome c6 is a soluble metalloprotein located in the periplasmic space and the thylakoid lumen of many cyanobacteria and is known to carry electrons from cytochrome b6f to photosystem I. The CuA domain of cytochrome c oxidase, the terminal enzyme which catalyzes the four-electron reduction of molecular oxygen in the respiratory chains of mitochondria and many bacteria, also has a periplasmic location. In order to test whether cytochrome c6 could also function as a donor for cytochrome c oxidase, we investigated the kinetics of the electron transfer between recombinant cytochrome c6 (produced in high yield in Escherichia coli by coexpressing the maturation proteins encoded by the ccmA-H gene cluster) and the recombinant soluble CuA domain (i.e., the donor binding and electron entry site) of subunit II of cytochrome c oxidase from Synechocystis PCC 6803. The forward and the reverse electron transfer reactions were studied by the stopped-flow technique and yielded apparent bimolecular rate constants of (3.3 +/- 0.3) x 10(5) M(-1) s(-1) and (3.9 +/- 0.1) x 10(6) M(-1) s(-1), respectively, in 5 mM potassium phosphate buffer, pH 7, containing 20 mM potassium chloride and 25 degrees C. This corresponds to an equilibrium constant Keq of 0.085 in the physiological direction (DeltarG'0 = 6.1 kJ/mol). The reduction of the CuA fragment by cytochrome c6 is almost independent on ionic strength, which is in contrast to the reaction of the CuA domain with horse heart cytochrome c, which decreases with increasing ionic strength. The findings are discussed with respect to the potential role of cytochrome c6 as mobile electron carrier in both cyanobacterial electron transport pathways.  相似文献   

8.
The heme iron of horse heart cytochrome c was selectively removed using anhydrous HF. The product, porphyrin c, exhibits the viscosity, far ultraviolet circular dichroic, and fluorescence properties characteristic for native cytochrome c. However, porphyrin c is more susceptible to denaturation by guanidine hydrochloride and by heat than is the parent cytochrome. All of the conformational parameters of porphyrin c exhibit a common reversible transition centered at 0.95 m guanidine hydrochloride at 23 degrees C and pH 7.0. Guanidine denatured porphyrin c refolds in two kinetic phases having time constants of 20 and 200 ms as detected by stopped flow absorbance or fluorescence measurement, with about 80% of the observed change in the faster phase. The kinetics of porphyrin c refolding are not significantly altered by increasing the viscosity of the refolding solvent 15-fold by addition of sucrose. We suggest that the folding of guanidine denatured cytochrome c is not a diffusion-limited process and that the requirement for protein axial ligation elicits the slow (s) kinetic phase observed in the refolding of cytochrome c.  相似文献   

9.
Two synthetic genes coding for human and Arabidopsis cytochrome c, respectively, have been designed and constructed, and the recombinant proteins have been over-expressed in Escherichia coli cells. Thus a comparative analysis of the two heme proteins, including horse cytochrome c as a reference, has been performed. In addition to their physico-chemical properties, the redox behavior of the three proteins has been analyzed by following the kinetics of both their reduction by flavin semiquinones (lumiflavin, riboflavin, and FMN) and oxidation by cytochrome c oxidase. The resulting data indicate that the accessibility and electrostatic charge of the active site do not differ in a significant way among the three proteins, but human cytochrome c exhibits some intriguing differences when interacting with cytochrome c oxidase that could be related to the amino acid changes underwent by the latter along evolution.  相似文献   

10.
The antioxidant functions of cytochrome c   总被引:6,自引:0,他引:6  
Low (C(1/2) = 1.5 x 10(-7) M) concentrations of horse cytochrome c strongly inhibit H(2)O(2) production by rat heart mitochondria under conditions of reverse electron transfer from succinate to NAD(+). The effect is abolished by binding of cytochrome c with liposomes and is not prevented by SOD. Yeast cytochrome c is much less effective than the horse protein whereas acetylated horse cytochrome c is without effect. H(2)O(2) formation stimulated by antimycin A is resistant to added cytochrome c. In inside-out submitochondrial vesicles, H(2)O(2) production is suppressed by all three cytochrome c samples tested, but at higher concentrations (C(1/2) is about 5 x 10(-7) M). In vesicles, SOD abolishes the cytochrome c inhibition. We conclude that extramitochondrial cytochrome c is competent in down-regulation of the Complex I H(2)O(2) production linked to the reverse electron transfer. Such an effect is absent in the inside-out submitochondrial vesicles where another antioxidant cytochrome c function can be observed, i.e. the oxidation of O(2-*) to O(2). A possible role of cytochrome c in the antioxidant defence is discussed.  相似文献   

11.
A Filosa  Y Wang  A A Ismail  A M English 《Biochemistry》2001,40(28):8256-8263
The sequential unfolding events of horse, cow, and tuna ferricytochromes c (cyt c) as a function of increasing temperature over the range 25-81 degrees C were investigated by resolution-enhanced two-dimensional infrared (2D IR) correlation spectroscopy. The 2D IR analysis revealed that in the thermal denaturation of the two mammalian cyts, the overall sequence of unfolding is similar, with denaturation of extended-chain and turn structures occurring prior to unfolding of alpha-helices, followed by denaturation of residual stable extended-chain structures. In tuna cyt c, denaturation of all extended-chain structures precedes the unfolding of alpha-helices. Moreover, in cow cyt c, unfolding of all helical components occurs as one cooperative unit, but in horse and tuna cyts c, the helical components behave as subdomains that unfold separately, as proposed recently by Englander and co-workers for horse cyt c [Bai et al. (1995) Science 269, 192-197; Milne et al. (1999) J. Mol. Biol. 290, 811-822]. At higher temperatures, following the loss of secondary structure, protein aggregation occurs in the three cyts c. The data presented here establish that variations in the thermal unfolding of cyts c can be associated with specific sites in the protein that influence local flexibility yet have little affect on global stability. This study demonstrates the power of resolution-enhanced 2D IR correlation spectroscopy in probing unfolding events in homologous proteins.  相似文献   

12.
The genes coding for the photosynthetic reaction center cytochrome c subunit (pufC) and the soluble cytochrome c2 (cycA) from the purple non-sulfur bacterium Rhodopseudomonas viridis were expressed in Escherichia coli. Biosynthesis of the reaction center cytochrome without a signal peptide resulted in the formation of inclusion bodies in the cytoplasm amounting to 14% of the total cellular protein. A series of plasmids coding for the cytochrome subunit with varying N-terminal signal peptides was constructed in attempts to achieve translocation across the E. coli cytoplasmic membrane and heme attachment. However, the two major recombinant proteins with N-termini corresponding to the signal peptide and the cytochrome were synthesized in E. coli as non-specific aggregates without heme incorporation. An increased ratio of precursor as compared to 'processed' apo-cytochrome was obtained when expression was carried out in a proteinase-deficient strain. Cytochrome c2 from R. viridis was synthesized in E. coli as a precursor associated with the cytoplasmic membrane. An expression plasmid was designed encoding the N-terminal part of the 33 kDa precursor protein of the oxygen-evolving complex of Photosystem II from spinach followed by cytochrome c2. Two recombinant proteins without heme were found to aggregate as inclusion bodies with N-termini corresponding to the signal peptide and the mature 33 kDa protein.  相似文献   

13.
Heterologous expression of c-type cytochromes in the periplasm of Escherichia coli often results in low soluble product yield, apoprotein formation, or protein degradation. We have expressed cytochrome c from Methylophilus methylotrophus in E. coli by coexpression of the gene encoding the cytochrome (cycA) with the host-specific cytochrome c maturation elements, within the ccmA-H gene cluster. Aerobic cultures produced up to 10 mg holoprotein per liter after induction with IPTG. In the absence of the maturation factors E. coli failed to produce a stable haem protein. Cytochrome c" isolated from the natural host was compared with the recombinant protein. No structural differences were detected using SDS-PAGE, UV-Visible spectroscopy, differential scanning calorimetry, and (1)H-NMR spectroscopy. The success in expressing the mature cytochrome c in E. coli allows the engineering of the cycA gene by site-directed mutagenesis thereby providing an ideal method for producing mutant protein for studying the structure/function relationship.  相似文献   

14.
1H-n.m.r. studies of horse, tuna, Candida krusei and Saccharomyces cerevisiae cytochromes c showed that each of the proteins contains a similar cluster of residues at the bottom of the protein that assists in shielding the haem from the solvent. The relative positions of the residues forming these clusters vary continuously with temperature, and they change with the change in protein redox state. This conformational heterogeneity is discussed with reference to the conformational flexibility of cytochrome c around residues 57, 59 and 74. Spectroscopic measurements of pKa values for Lys-55 (horse and tuna cytochromes c) and His-33 and His-39 (C. krusei and S. cerevisiae cytochromes c) are in excellent agreement with expectations based on chemical-modification studies of horse cytochrome c. [Bosshard & Zürrer (1980) J. Biol. Chem. 255, 6694-6699] and on the X-ray-crystallographic structure of tuna cytochrome c [Takano & Dickerson (1981) J. Mol. Biol. 153, 79-94, 95-115].  相似文献   

15.
The effect of varying polyglutamate chain length on local and global stability of horse heart ferricytochrome c was studied using scanning calorimetry and spectroscopy methods. Spectral data indicate that polyglutamate chain lengths equal or greater than eight monomer units significantly change the apparent pK(a) for the alkaline transition of cytochrome c. The change in pK(a) is comparable to the value when cytochrome c is complexed with cytochrome bc(1). Glutamate and diglutamate do not significantly alter the temperature transition for cleavage of the Met(80)-heme iron bond of cytochrome c. At low ionic strength, polyglutamates consisting of eight or more glutamate monomers increase midpoint of the temperature transition from 57.3+/-0.2 to 66.9+/-0.2 degrees C. On the other hand, the denaturation temperature of cytochrome c decreases from 85.2+/-0.2 to 68.8+/-0.2 degrees C in the presence of polyglutamates with number of glutamate monomers n >or approximately equal 8. The rate constant for cyanide binding to the heme iron of cytochrome c of cytochrome c-polyglutamate complex also decreases by approximately 42.5% with n>or approximately equal 8. The binding constant for the binding of octaglutamate (m.w. approximately 1000) to cyt c was found to be 1.15 x 10(5) M(-1) at pH 8.0 and low ionic strength. The results indicate that the polyglutamate (n>or approximately equal 8) is able to increase the stability of the methionine sulfur-heme iron bond of cytochrome c in spite of structural differences that weaken the overall stability of the cyt c at neutral and slightly alkaline pH.  相似文献   

16.
A systematic investigation of trichloroacetic acid (TCA) and trifluoroacetic acid (TFA)-induced equilibrium unfolding of native horse cytochrome c has been carried out using a combination of optical spectroscopy and electrospray ionization mass spectroscopy (ESI MS). In the presence of an increasing concentration of TCA the native cytochrome c does not undergo significant unfolding but stabilization of a partially folded intermediate is observed. This TCA-induced partially folding intermediate of cytochrome c had an enhanced secondary structure and slightly disrupted tertiary structure compared to native protein and undergoes extensive unfolding in the presence of TFA. However, in the presence of an increasing concentration of TFA, cytochrome c was found to undergo extensive unfolding characterized by a significant breakdown of the secondary and tertiary structure of protein. The TFA-unfolded cytochrome c was found to undergo folding in the presence of TCA and low guanidine hydrochloride (GdmCl) resulting in the stabilization of the partially folded intermediate. The effectiveness of TCA as compared to TFA in the stabilization of intermediates was further supported by the observation that low concentrations of TCA were found to induce refolding of HCl-denatured cytochrome c whereas, under similar concentrations of acid, no significant effect on the unfolded structure of protein was observed in the presence of TFA. ESI MS studies indicated that the trichloroacetate anion has a greater affinity for cytochrome c compared to trifluoroacetate anion, which might be the reason for the stabilization of the native-like folded intermediate during TCA-induced denaturation of cytochrome c as compared to extensive unfolding observed in the presence of TFA.  相似文献   

17.
Extensive investigations of the unfolding equilibria and kinetics of oxidized and reduced cytochromes c are reported. It is found that all cytochromes c have similar unfolding free energies (deltaGD = 7 +/- 1 kcal/mol). Differences among species do not correlate in any way with the metabolic differences among species. The stabilization of cytochrome c on reduction is estimated at 1.1 kcal/mol. Stability differences among species are mirrored in their denaturation kinetics. For cytochrome c (III), the unfolding exhibits multiple phases. The rate constants for the two observable phases both change by a factor of 3 between horse cytochrome c (III) and cow cytochrome c (III). On reduction, all unfolding appears to occur in a single step. The rate of this unfolding still varies between species, however, the results can be accommodated to a sequential model, with some assumptions. The observations are consistent with chain reversal occurring at an early stage in the reaction and suggest that previously observed rapid processes may be ligand exchange processes.  相似文献   

18.
19.
Hydrogenobacter thermophilus cytochrome c(552) ( Ht cyt c(552)) is a small monoheme protein in the cytochrome c(551) family. Ht cyt c(552) is unique because it is hypothesized to undergo spontaneous cytoplasmic maturation (covalent heme attachment) when expressed in Escherichia coli. This is in contrast to the usual maturation route for bacterial cytochromes c that occurs in the cellular periplasm, where maturation factors direct heme attachment. Here, the expression of Ht cyts c(552) in the periplasm as well as the cytoplasm of E. coli is reported. The products are characterized by absorption, circular dichroism, and NMR spectroscopy as well as mass spectrometry, proteolysis, and denaturation studies. The periplasmic product's properties are found to be indistinguishable from those reported for protein isolated from Ht cells, while the major cytoplasmic product exhibits structural anomalies in the region of the N-terminal helix. These anomalies are shown to result from the retention of the N-terminal methionine in the cytoplasmic product, and not from heme attachment errors. The (1)H NMR chemical shifts of the heme methyls of the oxidized ( S=1/2) expression products display a unique pattern not previously reported for a cytochrome c with histidine-methionine axial ligation, although they are consistent with native-like heme ligation. These results support the hypothesis that proper heme attachment can occur spontaneously in the E. coli cytoplasm for Ht cyt c(552).  相似文献   

20.
A gene coding for lipase-solubilized bovine liver microsomal cytochrome b5 has been synthesized, expressed in Escherichia coli, and mutated at functionally critical residues. Characterization of the recombinant protein revealed that it has a reduction potential that is approximately 17 mV lower than that of authentic wild-type protein at pH 7 (25 degrees C). Structural studies determined that the recombinant protein differed in sequence from authentic wild-type cytochrome b5 owing to three errors in amidation status in the published sequence for the protein on which the gene synthesis was based. The structural origin of the lower reduction potential exhibited by the triple mutant has been investigated through X-ray crystallographic determination of the three-dimensional structure of this protein and is attributed to the presence of Asp-57 within 3.3 A of heme vinyl-4 in the mutant. In addition, the model developed by Argos and Mathews [Argos, P., & Mathews, F.S. (1975) J. Biol. Chem. 250, 747] for the change in cytochrome b5 oxidation state has been studied through mutation of Ser-64 to Ala. In this model, Ser-64 is postulated to stabilize the oxidized protein through H-bonding interactions with heme propionate-7 that orients this propionate group 6.2 A from the heme iron. Spectroelectrochemical studies of a mutant in which Ser-64 has been changed to an alanyl residue demonstrate that this protein has a reduction potential that is 7 mV lower than that of the wild-type protein; moreover, conversion of the heme propionate groups to the corresponding methyl esters increases the potential by 67 mV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号