首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Studies on the metabolism of rat liver copper-metallothionein.   总被引:4,自引:4,他引:0       下载免费PDF全文
The degradation of purified 35S-labelled rat liver isometallothioneins (MT) by lysosomal extracts was studied. Zn-MT-I was more readily hydrolysed than Zn-MT-II, but no significant degradation of the Cu-containing metallothioneins could be detected, even after 24 h incubation. The susceptibility of MT to degradation in vitro may be related to the strength of the metal-thiolate bonds. However, the turnover rates of cytosolic MT in vivo, as established by pulse-labelling techniques, are apparently subject to different controls. The half-lives of MT-I and -II in the liver cytosol of Cu2+-injected rats were only 15.4 +/- 1.5 and 18.2 +/- 1.1 h respectively. Approx. 25% of the total liver MT was present in particulate fractions (probably in lysosomes) of the liver and had a half-life of 25.1 +/- 4.1 h.  相似文献   

2.
The appearance and excretion of metallothionein-I (MT-I) was studied in rats given a diet containing 1000 mg of Cu/kg for several weeks. No significant increase in MT-I concentrations in liver, plasma or bile was detected in rats with liver copper concentrations less than 600 micrograms of Cu/g fresh wt. Above this concentration, liver MT-I concentrations increased in proportion to the increase in hepatic copper content. Plasma and bile MT-I concentrations were directly related to those in the liver and were about 10 times those in normal rats. Urinary MT-I concentration also increased 10-fold within 1 week. Fractionation of bile and urine on Sephadex G-50 revealed the presence of monomeric MT-I and a range of possible degradation products of the isoprotein.  相似文献   

3.
4.
Shi YB  Fang JL  Liu XY  Du L  Tang WX 《Biopolymers》2002,65(2):81-88
The secondary structures of porcine brain Cu(4)Zn(3)-metallothionein (MT)-III and Cd(5)Zn(2)MT-I, Cd(5)Zn(2)MT-II, and Zn(7)MT-I from rabbit livers in the solid state are investigated by Fourier transform IR spectroscopy (FTIR) and Fourier transform Raman spectroscopy (FT-Raman). The Cu(4)Zn(3)MT-III contains 26-28% beta-turns and half-turns, 13-14% 3(10)-helices, 47-49% random coils, and 11-12% beta-extended chains. The structural comparison of porcine brain Cu(4)Zn(3)MT-III with rabbit liver Cd(5)Zn(2)MT-I (II) and Zn(7)MT-I shows that the contents of the random coil structure are obviously increased. The results indicate that the insert of an acidic hexapeptide in the alpha domain of Cu(4)Zn(3)MT-III possibly forms an alpha helix. However, because the bands assigned to the alpha-helix and random coil structures are overlapped in the spectra, the content of random coil structures in Cu(4)Zn(3)MT-III is therefore higher than those in Cd(5)Zn(2)MT-I, Cd(5)Zn(2)MT-II, and Zn(7)MT-I.  相似文献   

5.
Copper (Cu) accumulating in a form bound to metallothionein (MT) in the liver of Long-Evans rats with a cinnamon-like coat color (LEC rats), an animal model of Wilson disease, can be removed from the MT with tetrathiomolybdate (TTM). However, the insoluble Cu/TTM complex formed with excess TTM is known to be deposited in the liver. The metabolic fate of the insoluble Cu/TTM complex was investigated in the present study. LEC rats were injected with TTM at the dose of 10 mg/kg body weight for 8 consecutive days and were fed with a standard or low Cu diet for 14 days after the last injection. About 95% of the Cu in the liver became insoluble together with Mo. The concentration of Cu in the liver supernatants of rats fed with the standard diet increased significantly compared with that in rats dissected 24 h after the last injection (control rats), while the concentration in rats fed with the low Cu diet remained at a comparable level to that in the controls. The rate of Cu accumulation in the livers of rats fed with the standard diet did not differ before and after the treatment, suggesting that there was no rebound effect by treatment with TTM. These results suggest that the insoluble Cu/TTM complex is resolubilized in the liver, and that the solubilized complex is excreted into the bile and blood, i.e., the insoluble Cu/TTM complex is not the source of Cu re-accumulation in the form bound to MT in the liver after TTM treatment. It was concluded that, once Cu is complexed with TTM, the metal is excreted either immediately in the soluble form or slowly in the insoluble form into the bile and blood.  相似文献   

6.
Induction of metallothionein-I (MT-I) and metallothionein-II (MT-II) by glucocorticoids was determined by h.p.l.c. analysis of proteins and Northern-blot analysis of MT mRNAs. Rats were injected with dexamethasone (0.03-10 mumol/kg) and hepatic concentrations of MTs were determined 24 h later. In control rats, only MT-II was detected (9.4 +/- 2.5 micrograms/g of liver), whereas the hepatic concentration of MT-I was below the detection limit (5 micrograms of MT/g). Dexamethasone did not increase MT-I above the detection limit at any dosage tested, but MT-II increased to 2.5 times control values at dosages of 0.30 mumol/kg and higher. Time-course experiments indicated that MT-II reached a maximum at 24 h after a single dosage of dexamethasone and returned to control values by 48 h. To determine whether dexamethasone increased MT-I in liver, samples were saturated with 109Cd, after which the amount of 109Cd in MT-I and MT-II was determined. Results indicated that, by this approach, MT-I and MT-II could be detected in control rats, and there was approx. 1.8 times more 109Cd in MT-II than in MT-I. At 24 h after administration of dexamethasone (1 mumol/kg), there was a small increase in the amount of 109Cd bound to MT-I, whereas the amount of 109Cd bound to MT-II increased to more than 2 times control values. Northern-blot hybridization with mouse cRNA probes indicated that MT-I and MT-II mRNAs increased co-ordinately after administration of dexamethasone. Thus, although glucocorticoids increase both MT-I and MT-II mRNAs, MT-II preferentially accumulates after administration of dexamethasone.  相似文献   

7.
By employing electron spin resonance spectroscopy, we examined the free radicals scavenging effects of hepatic metallothionein (MT) isoforms I and II (MTs-I and II) on four types of free radicals. Solutions of 0.15mM of MT-I and 0.3mM of MT-II were found to scavenge the 1,1-diphenyl-2-picrylhydrazyl radicals (1.30 × 1015 spins/ml) completely. In addition, both isoforms exhibited total scavenging action against the hydroxyl radicals (1.75 × 1015 spins/ml) generated in a Fenton reaction. Similarly, 0.3mM of MT-I scavenged almost 90% of the superoxide (2.22 × 1015 spins/ml) generated by the hypoxanthine and xanthine oxidase system, while a 0.3mM MT-II solution could only scavenge 40% of it. By using 2,2,6,6-tetramethyl-4-piperidone as a “spin-trap” for the reactive oxygen species (containing singlet oxygen, superoxide and hydroxyl radicals) generated by photosensitized oxidation of riboflavin and measuring the relative signal intensities of the resulting stable nitroxide adduct, 2,2,6,6-tetramethyl-4-piperidine-1-oxyl, we observed that MT-II (0.3 mM) could scavenge 92%, while MT-I at 0.15 mM μl/ml concentrations could completely scavenge all the reactive species (2.15 × 1015 spins/ml) generated.

The results of these studies suggest that although both isoforms of MT are able to scavenge free radicals, the MT-I appears to be a superior scavenger of superoxide and 1,1 diphenyl-2-picrylhydrazyl radicals.  相似文献   

8.
The regulation of copper homeostasis in copper overloaded animals occurs by excretion of excess of the metal in bile and urine, which may be facilitated by metallothionein (MT) a copper binding protein. The role of MT in the mobilisation and excretion of copper excess has been studied in copper-loaded rats during the development of tolerance. Young male Wistar rats were fed a high copper (1 g/kg) diet for 16 weeks during which period they were killed after prior collection of bile, blood and urine for analysis for copper and immunoreactive MT-1. In addition bile was separated chromatographically and the eluant fractions were assessed likewise for copper and MT-1. Biliary excretion of copper and MT-1 rose to a maximum after 6 weeks, falling subsequently as the rats became copper tolerant. Early increases in circulating copper and MT-1 occurred likewise but whereas MT-1 fell subsequently during the recovery period, serum copper remained elevated. By contrast, urinary copper and MT-1 maintained an increased output throughout. Chromatographic separation of bile revealed the presence of a range of immunoreactive MT-1 degradation products. It was concluded that the close correspondence between bile and serum MT reflected their hepatic derivation and implicated liver MT as an export protein in the early stages of copper overload. By contrast, urine MT, maintained independently of circulating MT levels, established the active secretory participation of the kidney in promoting the continued depletion of excess copper.  相似文献   

9.
Copper (Cu) accumulating in a form bound to metallothionein (MT) in the liver of Long-Evans rats with a cinnamon-like coat color (LEC rats), an animal model of Wilson disease, was removed with ammonium tetrathiomolybdate (TTM), and the fate of the Cu complexed with TTM and mobilized from the liver was determined. TTM was injected intravenously as a single dose of 2, 10 or 50 mg TTM/kg body weight into LEC and Wistar (normal Cu metabolism) rats, and then the concentrations of Cu and molybdenum (Mo) in the bile and plasma were monitored with time after the injection. In Wistar rats, most of the Mo was excreted into the urine, only a small quantity being excreted into the bile, while Cu excreted into the urine decreased. However, in LEC rats, Cu and Mo were excreted into the bile and blood, and the bile is recognized for the first time as the major route of excretion. The Cu excreted into both the bile and plasma was accompanied by an equimolar amount of Mo. The relative ratio of the amounts of Cu excreted into the bile and plasma was 40/60 for the low and high dose groups, and 70/30 for the medium dose group. The systemic dispositions of the Cu mobilized from the liver and the Mo complexed with the Cu were also determined for the kidneys, spleen and brain together with their urinal excretion. Although Mo in the three organs and Cu in the kidneys and spleen were increased or showed a tendency to increase, Cu in the brain was not increased at all doses of TTM.  相似文献   

10.
Regulation of the ontogeny of rat liver metallothionein mRNA by zinc   总被引:1,自引:0,他引:1  
To investigate the role of metals in the regulation of the ontogenic expression of rat liver metallothionein (MT) mRNA, the concentrations of zinc, MT and MT mRNA were determined in livers of fetal and newborn rats from dams which were fed with a control or zinc-deficient or copper-deficient or iron-deficient diet from day 12 of gestation. The liver samples were analyzed for MT-mRNA levels using a mouse MT-I cRNA probe. Although the newborn hepatic levels of each metal (zinc or copper or iron) was specifically reduced corresponding to the respective mineral deficiencies, the hepatic concentrations of total MT and MT-I mRNA were significantly decreased only in pups born from zinc-deficient dams. Injection of the zinc-deficient newborn pups with 20 mg Zn as ZnSO4/kg restored with MT-I mRNA levels to slightly above control values within 5 h of injection. The hepatic zinc, MT and MT-I mRNA levels were observed to increase significantly in control fetal rat liver on days 17-21 of gestation but there were little changes in either zinc or MT in fetal livers from zinc-deficient dams during the late gestational period. The MT-I mRNA level also did not show an increase on days 18 and 20 of gestation in zinc-deficient fetal liver as compared to controls. These results demonstrate a direct role of zinc in hepatic MT gene expression in rat liver during late gestation. Immunohistochemical localization of MT using a specific antibody to rat liver MT showed that the staining for MT in zinc-deficient pup liver was mainly in the cytosol in contrast to the significant nuclear MT staining observed in control newborn rat liver. The results suggest that maternal zinc deficiency has a marked effect not only in decreasing the levels of hepatic MT and MT-I mRNA but also in the localization of MT in newborn rat liver.  相似文献   

11.
A competitive enzyme-linked immunosorbent assay (ELISA) for the measurement of metallothionein (MT) in tissues and body fluids has been developed. The ELISA employs the IgG fraction of a rabbit antiserum to rat liver Cd-MT-2 polymer, a biotinylated secondary antibody, and peroxidase conjugated avidin. With a 1:4000 dilution of the immunoglobulins, typical standard curves (logit-log regression) provide a linear range of 0.1–100 ng for MT-2 and 10–1000 ng for MT-1. Fifty percent inhibition is accomplished with 15 ng and 250 ng for MT-2 and MT-1, respectively. Rat liver MT-1 and MT-2 containing different metals (Ag, Cu, and Zn) inhibited the antibodies as effectively as CdMT. However, the antibodies exhibited greater affinity for both Apo-MT isoforms. Previously reported discrepancies between results obtained by metal binding assays (e.g., Ag-hem binding) and radioimmunoassay for MT levels in tissues have been largely resolved. By addition of 1% Tween 20 to samples, the ELISA routinely estimated the total MT in samples of rat, mouse, and human liver and kidney at 88% of the value obtained by the silver-hem binding assay. Specific antibodies to MT-2 were purified from our anti-serum by affinity purification using CH-Sepharose 4B coupled with rat liver MT-1. Estimation of MT in samples using purified MT-2 antibodies provided slightly lower values (72%) for MT in tissues as compared to the Ag-hem method. The predominant form of MT in tissues of control animals was found to be MT-2. Therefore, the MT-2 specific antibodies may be useful for the study of the functions of MT isoforms. Levels of total MT in tissues and biological fluids of rats injected with CdCl2 (0.3 mg Cd/kg) and Cd-MT (0.3 mg Cd/kg) were estimated by ELISA. The results suggest urinary MT levels may be related to kidney damage.  相似文献   

12.
Abstract: Metallothionein (MT) protein and mRNA levels were monitored following exposure of rat neonatal primary astrocyte cultures to methylmercury (MeHg). MT-I and MT-II mRNAs were probed on northern blots with an [α-32P]dCTP-labeled synthetic cDNA probe specific for rat MT mRNA. MT-I and MT-II mRNAs were detected in untreated cells, suggesting constitutive MT expression in these cells. The probes hybridize to a single mRNA with a size appropriate for MT, ∼550 and 350 bp for MT-I and MT-II, respectively. Expression of MT-I and MT-II mRNA in astrocyte monolayers exposed to 2 × 10−6 M MeHg for 6 h was increased over MT-I and MT-II mRNA levels in controls. Western blot analysis revealed a time-dependent increase in MT protein synthesis through 96 h of exposure to MeHg. Consistent with the constitutive expression of MTs at both the mRNA level and the protein level, we have also demonstrated a time-dependent increase in MT immunoreactivity in astrocytes exposed to MeHg. The cytotoxic effects of MeHg were measured by the rate of astrocytic d -[3H]aspartate uptake. Preexposure of astrocytes to CdCl2, a potent inducer of MTs, completely reversed the inhibitory effect of MeHg on d -[3H]aspartate uptake that occurs in MeHg-treated astrocytes with constitutive MT levels. Associated with CdCl2 treatment was a time-dependent increase in astrocytic MT levels. In summary, astrocytes constitutively express MTs; treatment with MeHg increases astrocytic MT expression, and increased MT levels (by means of CdCl2 pretreatment) attenuate MeHg-induced toxicity. Increased MT expression may represent a generalized response to heavy metal exposure, thus protecting astrocytes and perhaps also, indirectly, juxtaposed neurons from the neurotoxic effects of heavy metals.  相似文献   

13.
Metallothionein (MT) synthesis in rabbit kidney-derived RK-13 cells was studied. In response to Cd2+, RK-13 cells synthesized proteins closely similar in chromatographic and electrophoretic behaviors to the liver MTs induced in Cd2+-injected rabbit. These proteins were specifically immunoprecipitated by anti-mouse liver MT-II serum. The rate of RK-13 thionein (apoprotein of MT) synthesis rapidly increased after exposure to 1 microgram/ml of Cd2+, and reached the maximum in 7 h. The dose-response curve for the synthesis was biphasic; a sharp increase up to 0.5 microgram/ml and a slower increase at higher concentrations. RK-13 cells retained kidney-specific properties in terms of responsiveness of thionein synthesis to inducers; The MTs were inducible also by Zn2+ and probably by Hg2+, but not by dexamethasone. This system would therefore be a useful model in vitro for studying the regulation of MT synthesis in kidney cells.  相似文献   

14.
Dihydrolipoamide dehydrogenase from halophilic archaebacteria.   总被引:1,自引:0,他引:1  
Cadmium-binding proteins in the cytosol of testes from untreated rats were separated by Sephadex G-75 gel filtration. Three major testicular metal-binding proteins (TMBP), or groups of proteins, with relative elution volumes of approx. 1.0 (TMBP-1), 1.7 (TMBP-2) and 2.4 (TMBP-3) were separated. Elution of Zn-binding proteins exhibited a similar pattern. TMBP-3 has previously been thought to be metallothionein (MT), and hence this protein was further characterized and compared with hepatic MT isolated from Cd-treated rats. Estimation of Mr by gel filtration indicated a slight difference between MT (Mr 10000) and TMBP-3 (Mr 8000). Two major forms of MT (MT-I and MT-II) and TMBP-3 (TMBP-3 form I and TMBP-3 form II) were obtained after DEAE-Sephadex A-25 anion-exchange chromatography, with the corresponding subfractions being eluted at similar conductances. Non-denaturing polyacrylamide-gel electrophoresis on 7% acrylamide gels indicated that the subfractions of TMBP-3 had similar mobilities to those of the corresponding subfractions of MT. However, SDS (sodium dodecyl sulphate)/12% (w/v)-polyacrylamide-gel electrophoresis resulted in marked differences in migration of the two corresponding forms of MT and TMBP-3. Co-electrophoresis of MT-II and TMBP-3 form II by SDS/polyacrylamide-gel electrophoresis revealed two distinct proteins. Amino acid analysis indicated much lower content of cysteine in the testicular than in the hepatic proteins. TMBP-3 also contained significant amounts of tyrosine, phenylalanine and histidine, whereas MT did not. U.v.-spectral analysis of TMBP-3 showed a much lower A250/A280 ratio than for MT. Thus this major metal-binding protein in testes, which has been assumed to be MT is, in fact, a quite different protein.  相似文献   

15.
A rapid, reproducible, and sensitive high-performance liquid chromatography (HPLC) method for the determination of the concentrations of metallothionein-I (MT-I) and metallothionein-II (MT-II) in rat liver has been developed. Metallothioneins (MTs) were separated and quantitated by anion-exchange high-performance liquid chromatography coupled with atomic absorption spectrophotometry (AAS). Purified rat liver MT-I and MT-II, used as standards for developing the method, were easily resolved, eluting at 7.5 and 10.4 min, respectively. To establish standard curves, protein concentrations of solutions of the purified MTs were determined by the Kjeldahl method for the determination of nitrogen, after which the standards were saturated with Cd (final concentration of 50 ppm Cd). Rat liver cytosols obtained from untreated and Cd- or Zn-treated rats were prepared for HPLC-AAS analysis by saturation with Cd (50 ppm Cd) followed by heat denaturation (placing in a boiling water bath for 1 min). Based on the method of standard additions, recovery of MTs exceeded 95% and repeated injection of a sample yielded a coefficient of variance of approximately 2%. A detection limit of 5 micrograms MT/g liver was established for the method. Only MT-II was detected in untreated rats, whereas following exposure to Cd or Zn, both forms of MTs were detected. Concentrations of total MTs in liver of untreated and Cd- or Zn-treated rats were also determined by the Cd/hemoglobin radioassay (which fails to distinguish MT-I from MT-II) and indicated that results obtained with the HPLC-AAS method compared favorably to the Cd/hemoglobin radioassay. Thus, the HPLC-AAS method for quantitating MT-I and MT-II offers the advantage of determining the concentrations of both proteins in tissues and should be useful for studying the regulation of MT-I and MT-II.  相似文献   

16.
Rats develop strong resistance to re-infection and super-infection by Clonorchis sinensis. The present study investigated the antibodies present in the sera and bile juice of rats that were primary infected and re-infected with C. sinensis. The serum level of specific IgG antibodies, which were elevated 2 wk of the primary infection, peaked at 4 wk and subsequently remained unchanged even during re-infection. The total IgE level in serum increased slowly from 388 ng / ml to 3,426 ng / ml beginning 2 wk after the primary infection, and remained high up to 8 wk but dropped to a normal level (259 ng / ml) after treatment. In resistant re-infected rats, the serum IgE level increased rapidly and peaked within 1 wk, whereas no increase was observed in immunosuppressed rats. The serum level of specific IgA antibodies was elevated beginning 1 wk after infection, and decreased 4 wk after treatment. The total bile IgA level unchanged during the primary infection but increased in treated and re-infected rats. The elevated levels of serum IgE and bile IgA indicate that these immunoglobulins may be correlated with the development of resistance to re-infection by C. sinensis in rats.  相似文献   

17.
1. A short-term exposure of adult Wistar rats to Cu (50 μg/ml) and Cd (10.0 μg/ml drinking water) caused significant changes in the subcellular concentrations of Cd, Cu, Zn and metallothionein (MT) in the liver and kidney; the concentrations were close to the physiological values, however.2. To establish a relationship between these changes in the subcellular concentrations of Cd, Cu, Zn and the level of MT in the post-mitochondrial fraction of the liver and kidney, the analytical data (N = 42) were subjected to the multiple regression analysis.3. The analysis showed that MT synthesis in the liver was principally induced by small amounts of Cd (0.32–1.4 μg/g wet wt) whereas in the kidney a level of MT in the post-mitochondrial fraction correlated positively with the renal Cd and Cu, as well as with the level of this protein in the liver.4. The above results together with the positive correlation between the level of MT in the post-mitochondrial fraction and the concentration of Cu in this fraction, as well as the fact that under normal physiological conditions the capacity of MT (β-domain) in the liver and kidney was sufficient to bind 50–100% of the total post-mitochondrial Cu suggest that MT, first induced by small amounts of Cd, may be involved in the metabolism of Cu.  相似文献   

18.
The developmental alterations in metallothionein (MT) proteins and zinc (Zn) were investigated in brains of two transgenic strains of mice. MT protein was measured by a cadmium binding assay and Zn by atomic absorption spectrophotometry. MT proteins were expressed at birth (day 1) both in MT-I overexpressing transgenic mouse (MT-I*) and MT-null (expressing only brain specific isoform, MT-III) transgenic mouse. MT proteins level (mainly MT-I) in MT-I* was 16.1 Μ-g/g at birth, and thereafter increased with age to a maximal adult level of 55.3 Μg/g (day 60). Zn level in MT-I* also increased from 8.43 Μg/g (day 1) to 20.7 Μg/g (day 60) with age. MT protein (MT-III) in MT-null mouse was 9.71 Μg/g at birth and remained relatively unchanged during development. Zn level in MT-null mouse at birth was 9.46 Μg/g and also remained unchanged during development. The similar alterations in MT isoforms and Zn in brain during development suggest that MT isoforms may act as a Zn binding protein.  相似文献   

19.
A study has been made of factors which may influence the induction of metallothionein-I (MT-I) synthesis by the superoxide radical generating agent, paraquat (PQ). Hepatic concentrations of zinc (Zn) and MT-I increased in rats injected with PQ (40 mg/kg, s.c.) or fasting, but were greater in the former. Renal concentration of MT-I increased in fasted rats but not in PQ-treated rats. The data suggest that the increase in MT-I concentrations in PQ-treated rats is not caused by reduction in food intake. Administration of PQ increased hepatic concentrations of Zn, MT-I and thiobarbituric acid-reactive substances (TBA-RS), indicating the occurrence of lipid peroxidation. Treatment of rats with vitamin E (400 mg/kg, s.c.) on 4 successive days before injection of PQ prevented only the enhancement of lipid peroxidation. The data indicate that the induction of MT synthesis by PQ is not correlated with enhancement of lipid peroxidation. Similar results were obtained in the liver of rats subjected to the radical-generating conditions, such as fasting and exposure to carbon tetrachloride. Free radicals may induce MT synthesis by direct or indirect mechanisms.  相似文献   

20.
Recent data suggests that metallothioneins (MTs) are major neuroprotective proteins within the CNS. In this regard, we have recently demonstrated that MT-IIA (the major human MT-I/-II isoform) promotes neural recovery following focal cortical brain injury. To further investigate the role of MTs in cortical brain injury, MT-I/-II expression was examined in several different experimental models of cortical neuron injury. While MT-I/-II immunoreactivity was not detectable in the uninjured rat neocortex, by 4 days, following a focal cortical brain injury, MT-I/-II was found in astrocytes aligned along the injury site. At latter time points, astrocytes, at a distance up to several hundred microns from the original injury tract, were MT-I/-II immunoreactive. Induced MT-I/-II was found both within the cell body and processes. Using a cortical neuron/astrocyte co-culture model, we observed a similar MT-I/-II response following in vitro injury. Intriguingly, scratch wound injury in pure astrocyte cultures resulted in no change in MT-I/-II expression. This suggests that MT induction was specifically elicited by neuronal injury. Based upon recent reports indicating that MT-I/-II are major neuroprotective proteins within the brain, our results provide further evidence that MT-I/-II plays an important role in the cellular response to neuronal injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号