首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and three Escherichia coli strains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicated E. coli strain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L?1 acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.  相似文献   

2.
Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designed E. coli–E. coli co‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.  相似文献   

3.
Chondroitin sulfates (CSs) are linear glycosaminoglycans that have important applications in the medical and food industries. Engineering bacteria for the microbial production of CS will facilitate a one‐step, scalable production with good control over sulfation levels and positions in contrast to extraction from animal sources. To achieve this goal, Escherichia coli (E. coli) is engineered in this study using traditional metabolic engineering approaches to accumulate 3′‐phosphoadenosine‐5′‐phosphosulfate (PAPS), the universal sulfate donor. PAPS is one of the least‐explored components required for the biosynthesis of CS. The resulting engineered E. coli strain shows an ≈1000‐fold increase in intracellular PAPS concentrations. This study also reports, for the first time, in vitro biotransformation of CS using PAPS, chondroitin, and chondroitin‐4‐sulfotransferase (C4ST), all synthesized from different engineered E. coli strains. A 10.4‐fold increase is observed in the amount of CS produced by biotransformation by employing PAPS from the engineered PAPS‐accumulating strain. The data from the biotransformation experiments also help evaluate the reaction components that need improved production to achieve a one‐step microbial synthesis of CS. This will provide a new platform to produce CS.  相似文献   

4.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

5.
Apocarotenoids, such as α‐, β‐ionone, and retinol, have high commercial values in the food and cosmetic industries. The demand for natural ingredients has been increasing dramatically in recent years. However, attempts to overproduce β‐ionone in microorganisms have been limited by the complexity of the biosynthetic pathway. Here, an Escherichia coli‐based modular system was developed to produce various apocarotenoids. Incorporation of enzyme engineering approaches (N‐terminal truncation and protein fusion) into modular metabolic engineering strategy significantly improved α‐ionone production from 0.5 mg/L to 30 mg/L in flasks, producing 480 mg/L of α‐ionone in fed‐batch fermentation. By modifying apocarotenoid genetic module, this platform strain was successfully re‐engineered to produce 32 mg/L and 500 mg/L of β‐ionone in flask and bioreactor, respectively (>80‐fold higher than previously reported). Similarly, 33 mg/L of retinoids was produced in flask by reconstructing apocarotenoid module, demonstrating the versatility of the “plug‐n‐play” modular system. Collectively, this study highlights the importance of the strategy of simultaneous modular pathway optimization and enzyme engineering to overproduce valuable chemicals in microbes.  相似文献   

6.
Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co‐culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co‐culture system by metabolic engineering. In addition, the critical gene of 4‐coumaroyl‐CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi‐copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co‐culture system, which was nearly eight fold to that of the mono‐culture of yeast. This is the first time for the biosynthesis of naringenin in the co‐culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.  相似文献   

7.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

8.
Due to its availability, low‐price, and high degree of reduction, glycerol has become an attractive carbon source for the production of fuels and reduced chemicals. Using the platform we have established from the identification of key pathways mediating fermentative metabolism of glycerol, this work reports the engineering of Escherichia coli for the conversion of glycerol into 1,2‐propanediol (1,2‐PDO). A functional 1,2‐PDO pathway was engineered through a combination of overexpression of genes involved in its synthesis from the key intermediate dihydroxyacetone phosphate (DHAP) and the manipulation of the fermentative glycerol utilization pathway. The former included the overexpression of methylglyoxal synthase (mgsA), glycerol dehydrogenase (gldA), and aldehyde oxidoreductase (yqhD). Manipulation of the glycerol utilization pathway through the replacement of the native E. coli PEP‐dependent dihydroxyacetone kinase (DHAK) with an ATP‐dependent DHAK from C. freundii increased the availability of DHAP allowing for higher 1,2‐PDO production. Analysis of the major fermentative pathways indentified ethanol as a required co‐product while increases in 1,2‐PDO titer and yield were achieved through the disruption of the pathways for acetate and lactate production. Combination of these key metabolic manipulations resulted in an engineered E. coli strain capable of producing 5.6 g/L 1,2‐PDO, at a yield of 21.3% (w/w). This strain also performed well when crude glycerol, a by‐product of biodiesel production, was used as the substrate. The titer and yield achieved in this study were favorable to those obtained with the use of E. coli for the production of 1,2‐PDO from common sugars. Biotechnol. Bioeng. 2011; 108:867–879. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

10.
N‐acetylneuraminic acid (NeuAc) is widely used as a nutraceutical for facilitating infant brain development, maintaining brain health, and enhancing immunity. Currently, NeuAc is mainly produced by extraction from egg yolk and milk, or via chemical synthesis. However, its low concentration in natural resources and its non‐ecofriendly chemical synthesis result in insufficient NeuAc production and environmental pollution, respectively. In this study, improved NeuAc production was attained via modular pathway engineering of the supply pathways of two key precursors—N‐acetylglucosamine (GlcNAc) and phosphoenolpyruvate (PEP)—and by balancing NeuAc biosynthesis and cell growth in engineered Bacillus subtilis. Specifically, we used a previously constructed GlcNAc‐producing B. subtilis as the initial host for NeuAc biosynthesis. First, we constructed a de novo NeuAc biosynthetic pathway utilizing glucose by coexpressing glucosamine‐6‐phosphate acetyl‐transferase (GNA1), N‐acetylglucosamine 2‐epimerase (AGE), and N‐acetylneuraminic acid synthase (NeuB), resulting in 0.33 g/l NeuAc production. Next, to balance the supply of the two key precursors for NeuAc biosynthesis, modular pathway engineering was performed. The optimal strategy for balancing the GlcNAc module and PEP supply module involved the use of an engineered, unique glucose and malate coutilization pathway in B. subtilis, supplied with both glucose (for the GlcNAc moiety) and malate (for the PEP moiety) at high strength. This led to 1.65 g/L NeuAc production, representing a 5.0‐fold improvement over the existing methods. Furthermore, to enhance the NeuAc yield on cell, glucose and malate coutilization pathways were engineered to balance NeuAc biosynthesis and cell growth via the blocking of glycolysis, the introduction of the Entner–Doudoroff pathway, and the overexpression of the malic enzyme YtsJ. NeuAc titer reached 2.18 g/L, with 0.38 g/g dry cell weight NeuAc yield on cell, which represented a 1.32‐fold and 2.64‐fold improvement over the existing methods, respectively. The strategy of modular pathway engineering of key carbon precursor supply pathways via engineering of the unique glucose‐malate coutilization pathway in B. subtilis should be generically applicable for engineering of B. subtilis for the production of other important biomolecules. Our study also provides a good starting point for further metabolic engineering to achieve industrial production of NeuAc by a Generally Regarded As Safe bacterial strain.  相似文献   

11.
4-Amino-1-butanol (4AB) serves as an important intermediate compound for drugs and a precursor of biodegradable polymers used for gene delivery. Here, we report for the first time the fermentative production of 4AB from glucose by metabolically engineered Corynebacterium glutamicum harboring a newly designed pathway comprising a putrescine (PUT) aminotransferase (encoded by ygjG) and an aldehyde dehydrogenase (encoded by yqhD) from Escherichia coli, which convert PUT to 4AB. Application of several metabolic engineering strategies such as fine-tuning the expression levels of ygjG and yqhD, eliminating competing pathways, and optimizing culture condition further improved 4AB production. Fed-batch culture of the final metabolically engineered C. glutamicum strain produced 24.7 g/L of 4AB. The strategies reported here should be useful for the microbial production of primary amino alcohols from renewable resources.  相似文献   

12.
A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L ‐valine tolerance, was metabolically engineered for the production of L ‐valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L ‐valine, available for enhanced L ‐valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBNmut genes encoding feedback‐resistant acetohydroxy acid synthase (AHAS) I and the L ‐valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid‐based overexpression. The global regulator Lrp and L ‐valine exporter YgaZH were also amplified by plasmid‐based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBNmut, ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L ‐valine by fed‐batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L ‐valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K‐12, which have so far been the most efficient L ‐valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Bioeng. 2011; 108:1140–1147. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
L ‐Lysine is a potential feedstock for the production of bio‐based precursors for engineering plastics. In this study, we developed a microbial process for high‐level conversion of L ‐lysine into 5‐aminovalerate (5AVA) that can be used as a monomer in nylon 6,5 synthesis. Recombinant Escherichia coli WL3110 strain expressing Pseudomonas putida delta‐aminovaleramidase (DavA) and lysine 2‐monooxygenase (DavB) was grown to high density in fed‐batch culture and used as a whole cell catalyst. High‐density E. coli WL3110 expressing DavAB, grown to an optical density at 600 nm (OD600) of 30, yielded 36.51 g/L 5AVA from 60 g/L L ‐lysine in 24 h. Doubling the cell density of E. coli WL3110 improved the conversion yield to 47.96 g/L 5AVA from 60 g/L of L ‐lysine in 24 h. 5AVA production was further improved by doubling the L ‐lysine concentration from 60 to 120 g/L. The highest 5AVA titer (90.59 g/L; molar yield 0.942) was obtained from 120 g/L L ‐lysine by E. coli WL3110 cells grown to OD600 of 60. Finally, nylon 6,5 was synthesized by bulk polymerization of ?‐caprolactam and δ‐valerolactam prepared from microbially synthesized 5AVA. The hybrid system demonstrated here has promising possibilities for application in the development of industrial bio‐nylon production processes.  相似文献   

14.
α-Ketoglutaric acid (α-KG) is a multifunctional dicarboxylic acid in the tricarboxylic acid (TCA) cycle, but microbial engineering for α-KG production is not economically efficient, due to the intrinsic inefficiency of its biosynthetic pathway. In this study, pathway engineering was used to improve pathway efficiency for α-KG production in Escherichia coli. First, the TCA cycle was rewired for α-KG production starting from pyruvate, and the engineered strain E. coli W3110Δ4-PCAI produced 15.66 g/L α-KG. Then, the rewired TCA cycle was optimized by designing various strengths of pyruvate carboxylase and isocitrate dehydrogenase expression cassettes, resulting in a large increase in α-KG production (24.66 g/L). Furthermore, acetyl coenzyme A (acetyl-CoA) availability was improved by overexpressing acetyl-CoA synthetase, leading to α-KG production up to 28.54 g/L. Finally, the engineered strain E. coli W3110Δ4-P(H)CAI(H)A was able to produce 32.20 g/L α-KG in a 5-L fed-batch bioreactor. This strategy described here paves the way to the development of an efficient pathway for microbial production of α-KG.  相似文献   

15.
Aims: Escherichia coli has emerged as a viable heterologous host for the production of complex, polyketide natural compounds. In this study, polyketide biosynthesis was compared between different E. coli strains for the purpose of better understanding and improving heterologous production. Methods and Results: Both B and K‐12 E. coli strains were genetically modified to support heterologous polyketide biosynthesis [specifically, 6‐deoxyerythronolide B (6dEB)]. Polyketide production was analysed using a helper plasmid designed to overcome rare codon usage within E. coli. Each strain was analysed for recombinant protein production, precursor consumption, by‐product production, and 6dEB biosynthesis. Of the strains tested for biosynthesis, 6dEB production was greatest for E. coli B strains. When comparing biosynthetic improvements as a function of mRNA stability vs codon bias, increased 6dEB titres were observed when additional rare codon tRNA molecules were provided. Conclusions: Escherichia coli B strains and the use of tRNA supplementation led to improved 6dEB polyketide titres. Significance and Impact of the Study: Given the medicinal potential and growing field of polyketide heterologous biosynthesis, the current study provides insight into host‐specific genetic backgrounds and gene expression parameters aiding polyketide production through E. coli.  相似文献   

16.
1,2,4‐Butanetriol (BT) is a valuable chemical with versatile applications in many fields and can be produced through biosynthetic pathways. As a trihydric alcohol, BT possesses good water solubility and is very difficult to separate from fermentation broth, which does complicate the production process and increase the cost. To develop a novel method for BT separation, a biosynthetic pathway for 1,2,4‐butanetriol esters with poor water solubility was constructed. Wax ester synthase/acyl‐coenzyme A: diacylglycerol acyltransferase (Atf) from Acinetobacter baylyi, Mycobacterium smegmatis, and Escherichia coli were screened, and the acyltransferase from A. baylyi (AtfA) was found to have higher capability. The BT producing strain with AtfA overexpression produced 49.5 mg/L BT oleate in flask cultivation. Through enhancement of acyl‐CoA production by overexpression of the acyl‐CoA synthetase gene fadD and deleting the acyl coenzyme A dehydrogenase gene fadE, the production was improved to 64.4 mg/L. Under fed‐batch fermentation, the resulting strain produced up to 1.1 g/L BT oleate. This is the first time showed that engineered E. coli strains can successfully produce BT esters from xylose and free fatty acids.  相似文献   

17.
A genetically engineered strain of Escherichia coli JM109 harboring the isopropanol-producing pathway consisting of five genes encoding four enzymes, thiolase, coenzyme A (CoA) transferase, acetoacetate decarboxylase from Clostridium acetobutylicum ATCC 824, and primary–secondary alcohol dehydrogenase from C. beijerinckii NRRL B593, produced up to 227 mM of isopropanol from glucose under aerobic fed-batch culture conditions. Acetate production by the engineered strain was approximately one sixth that produced by a control E. coli strain bearing an expression vector without the clostridial genes. These results demonstrate a functional isopropanol-producing pathway in E. coli and consequently carbon flux from acetyl-CoA directed to isopropanol instead of acetate. This is the first report on isopropanol production by genetically engineered microorganism under aerobic culture conditions.  相似文献   

18.
Thomas U. Schwartz 《Proteins》2013,81(11):1857-1861
His‐tag affinity purification is one of the most commonly used methods to purify recombinant proteins expressed in E. coli. One drawback of using the His‐tag is the co‐purification of contaminating histidine‐rich E. coli proteins. We engineered a new E. coli expression strain, LOBSTR (lo w b ackground str ain), which eliminates the most abundant contaminants. LOBSTR is derived from the E. coli BL21(DE3) strain and carries genomically modified copies of arnA and slyD, whose protein products exhibit reduced affinities to Ni and Co resins, resulting in a much higher purity of the target protein. The use of LOBSTR enables the pursuit of challenging low‐expressing protein targets by reducing background contamination with no additional purification steps, materials, or costs, and thus pushes the limits of standard His‐tag purifications. Proteins 2013; 81:1857–1861. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Polylactic acid (PLA) is a promising biomass‐derived polymer, but is currently synthesized by a two‐step process: fermentative production of lactic acid followed by chemical polymerization. Here we report production of PLA homopolymer and its copolymer, poly(3‐hydroxybutyrate‐co‐lactate), P(3HB‐co‐LA), by direct fermentation of metabolically engineered Escherichia coli. As shown in an accompanying paper, introduction of the heterologous metabolic pathways involving engineered propionate CoA‐transferase and polyhydroxyalkanoate (PHA) synthase for the efficient generation of lactyl‐CoA and incorporation of lactyl‐CoA into the polymer, respectively, allowed synthesis of PLA and P(3HB‐co‐LA) in E. coli, but at relatively low efficiency. In this study, the metabolic pathways of E. coli were further engineered by knocking out the ackA, ppc, and adhE genes and by replacing the promoters of the ldhA and acs genes with the trc promoter based on in silico genome‐scale metabolic flux analysis in addition to rational approach. Using this engineered strain, PLA homopolymer could be produced up to 11 wt% from glucose. Also, P(3HB‐co‐LA) copolymers containing 55–86 mol% lactate could be produced up to 56 wt% from glucose and 3HB. P(3HB‐co‐LA) copolymers containing up to 70 mol% lactate could be produced to 46 wt% from glucose alone by introducing the Cupriavidus necator β‐ketothiolase and acetoacetyl‐CoA reductase genes. Thus, the strategy of combined metabolic engineering and enzyme engineering allowed efficient bio‐based one‐step production of PLA and its copolymers. This strategy should be generally useful for developing other engineered organisms capable of producing various unnatural polymers by direct fermentation from renewable resources. Biotechnol. Bioeng. 2010; 105: 161–171. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号