首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designed E. coli–E. coli co‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.  相似文献   

2.
3.
Benzoic acid (BA) is an important platform aromatic compound in chemical industry and is widely used as food preservatives in its salt forms. Yet, current manufacture of BA is dependent on petrochemical processes under harsh conditions. Here we report the de novo production of BA from glucose using metabolically engineered Escherichia coli strains harboring a plant-like β-oxidation pathway or a newly designed synthetic pathway. First, three different natural BA biosynthetic pathways originated from plants and one synthetically designed pathway were systemically assessed for BA production from glucose by in silico flux response analyses. The selected plant-like β-oxidation pathway and the synthetic pathway were separately established in E. coli by expressing the genes encoding the necessary enzymes and screened heterologous enzymes under optimal plasmid configurations. BA production was further optimized by applying several metabolic engineering strategies to the engineered E. coli strains harboring each metabolic pathway, which included enhancement of the precursor availability, removal of competitive reactions, transporter engineering, and reduction of byproduct formation. Lastly, fed-batch fermentations of the final engineered strain harboring the β-oxidation pathway and the strain harboring the synthetic pathway were conducted, which resulted in the production of 2.37 ± 0.02 g/L and 181.0 ± 5.8 mg/L of BA from glucose, respectively; the former being the highest titer reported by microbial fermentation. The metabolic engineering strategies developed here will be useful for the production of related aromatics of high industrial interest.  相似文献   

4.
Modular co‐culture engineering is an emerging approach for biosynthesis of complex natural products. In this study, microbial co‐cultures composed of two and three Escherichia coli strains, respectively, are constructed for de novo biosynthesis of flavonoid acacetin, a value‐added natural compound possessing numerous demonstrated biological activities, from simple carbon substrate glucose. To this end, the heterologous biosynthetic pathway is divided into different modules, each of which is accommodated in a dedicated E. coli strain for functional expression. After the optimization of the inoculation ratio between the constituent strains, the engineered co‐cultures show a 4.83‐fold improvement in production comparing to the mono‐culture controls. Importantly, cultivation of the three‐strain co‐culture in shake flasks result in the production of 20.3 mg L?1 acacetin after 48 h. To the authors' knowledge, this is the first report on acacetin de novo biosynthesis in a heterologous microbial host. The results of this work confirm the effectiveness of modular co‐culture engineering for complex flavonoid biosynthesis.  相似文献   

5.
Carotenoid biosynthesis is highly conserved and well characterized up to the synthesis of β‐carotene. Conversely, the synthesis of astaxanthin from β‐carotene is less well characterized. Regardless, astaxanthin is a highly sought natural product, due to its various industrial applications and elevated antioxidant capacity. In this article, 12 β‐carotene ketolase and 4 β‐carotene hydroxylase genes, isolated from 5 cyanobacterial species, are investigated for their function, and potential for microbial astaxanthin synthesis. Further, this in vivo comparison identifies and applies the most promising genetic elements within a dual expression vector, which is maintained in Escherichia coli. Here, combined overexpression of individual β‐carotene ketolase and β‐carotene hydroxylase genes, within a β‐carotene accumulating host, enables a 23.5‐fold improvement in total carotenoid yield (1.99 mg g?1), over the parental strain, with >90% astaxanthin. Biotechnol. Bioeng. 2009;103: 944–955. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Herein, we report the development of a microbial bioprocess for high‐level production of 5‐aminolevulinic acid (5‐ALA), a valuable non‐proteinogenic amino acid with multiple applications in medical, agricultural, and food industries, using Escherichia coli as a cell factory. We first implemented the Shemin (i.e., C4) pathway for heterologous 5‐ALA biosynthesis in E. coli. To reduce, but not to abolish, the carbon flux toward essential tetrapyrrole/porphyrin biosynthesis, we applied clustered regularly interspersed short palindromic repeats interference (CRISPRi) to repress hemB expression, leading to extracellular 5‐ALA accumulation. We then applied metabolic engineering strategies to direct more dissimilated carbon flux toward the key precursor of succinyl‐CoA for enhanced 5‐ALA biosynthesis. Using these engineered E. coli strains for bioreactor cultivation, we successfully demonstrated high‐level 5‐ALA biosynthesis from glycerol (~30 g L?1) under both microaerobic and aerobic conditions, achieving up to 5.95 g L?1 (36.9% of the theoretical maximum yield) and 6.93 g L?1 (50.9% of the theoretical maximum yield) 5‐ALA, respectively. This study represents one of the most effective bio‐based production of 5‐ALA from a structurally unrelated carbon to date, highlighting the importance of integrated strain engineering and bioprocessing strategies to enhance bio‐based production.  相似文献   

7.
Renewable energy is one of the key issues for sustainable development. Compared with alcohols and esters, alkanes—with the highest energy density—are a better liquid fuel. In this study, we focused on medium‐chain alkanes, the main compounds of jet fuels. To control the chain length of alkanes, a chain length specific thioesterase from Umbellularia californica, a fatty acyl‐CoA reductase Acinetobacter sp. M‐1 that prefers lauroyl‐CoA and myristoyl‐CoA, and a decarbonylase from Nostoc punctiforme were engineering into Escherichia coli cells. The combination of genes, which determines the chain length of products, was carefully designed to control the product spectrum. Undecane and tridecane were produced with a concentration of 2.21 ± 0.18 and 1.83 ± 0.12 mg?g?1, respectively. A total of 4.01 ± 0.43 mg?g?1 pentadecane was also detected in the final products. The results showed the feasibility to use microorganisms as cell factories for alkane production. The product spectrum revealed that the chosen genes played a key role in the production of chain length specific alkanes.  相似文献   

8.
Menaquinone-8 (MK-8, vitamin K) is composed of a non-polar side chain and a polar head group. Escherichia coli was chosen and metabolically engineered as a microbial platform for production of MK-8. MK-8 content in E. coli was significantly enhanced by modulating two precursor pools, which supply a non-polar side chain and a polar head group, and further increased by blocking formation of the competitor ubiquinone-8 (Q-8). Overexpression of E. coli IspA, DXR, or IDI increased MK-8 content up to twofold. A similar positive effect was also observed when E. coli MenA, MenB, MenC, MenD, MenE, MenF, or UbiE was overexpressed. The Q-8-deficient ubiCA mutant enhanced MK-8 content by 30% compared to wild-type E. coli. When MenA or MenD was overexpressed, MK-8 content was enhanced fivefold compared with wild-type E. coli.  相似文献   

9.
10.
11.
A pioneering study showed that the glycosphingolipid biosynthesis‐globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1 and NAGA) may play an important regulatory role in resistance to Escherichia coli F18 in piglets. Therefore, we analysed differential gene expression in 11 tissues of two populations of piglets sensitive and resistant respectively to E. coli F18 and the correlation of differential gene expression in duodenal and jejunal tissues. We found that the mRNA expression of the seven genes was relatively high in spleen, liver, lung, kidney, stomach and intestinal tract; the levels in thymus and lymph nodes were lower, with the lowest levels in heart and muscle. FUT2 gene expression in the duodenum and jejunum of the resistant population was significantly lower than that in the sensitive group (< 0.01). ST3GAL1 gene expression was also significantly lower in the duodenum of the resistant population than in the sensitive group (< 0.05). No significant differences were observed among the remaining genes. The expression level of FUT1 was extremely significantly positively correlated with FUT2 and B3GALNT1 expression (< 0.01) and also had a significant positive correlation with NAGA expression (< 0.05). The expression level of FUT2 had extremely significant positive correlations with FUT1, ST3GAL1 and B3GALNT1 (< 0.01). These results suggest that FUT2 plays an important role in E. coli F18 resistance in piglets. FUT1, ST3GAL1, B3GALNT1 and NAGA may also participate in the mechanism of resistance to E. coli F18.  相似文献   

12.
13.
14.
15.
16.
In the genome‐engineering era, it is increasingly important that researchers have access to a common set of platform strains that can serve as debugged production chassis and the basis for applying new metabolic engineering strategies for modeling and characterizing flux, engineering complex traits, and optimizing overall performance. Here, we describe such a platform strain of E. coli engineered for ethanol production. Starting with a fully characterized host strain (BW25113), we site‐specifically integrated the genes required for homoethanol production under the control of a strong inducible promoter into the genome and deleted the genes encoding four enzymes from competing pathways. This strain is capable of producing >30 g/L of ethanol in minimal media with <2 g/L produced of any fermentative byproduct. Using this platform strain, we tested previously identified ethanol tolerance genes and found that while tolerance was improved under certain conditions, any effect on ethanol production or tolerance was lost when grown under production conditions. Thus, our findings reinforce the need for a metabolic engineering “commons” that could provide a set of platform strains for use in more sophisticated genome‐engineering strategies. Towards this end, we have made this production strain available to the scientific community. Biotechnol. Bioeng. 2013; 110: 1520–1526. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
异戊二烯作为一种重要的化工原料,主要用于合成橡胶。此外,还广泛应用于医药或化工中间体、食品、粘合剂及航空燃料等领域。利用微生物法生产异戊二烯因具有环境友好、利用廉价的可再生原料、可持续发展等优势而成为当今研究的热点。这里介绍了大肠杆菌生产异戊二烯的代谢途径及关键酶,从代谢工程的角度出发综述了目前为提高大肠杆菌异戊二烯产量所应用到的方法和策略,并对今后的发展方向进行了展望。  相似文献   

18.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

19.
The recent use of heterologous hosts to produce natural products has shown significant potential, although limitations still exist regarding optimal production titers. In this study, we utilize micro‐scale cultures and well‐defined screening methods to identify key medium components that influence the heterologous production of the complex polyketide 6‐deoxyerythronolide B (6dEB) through E. coli. It was determined that tryptone had a significant effect on 6dEB production and could supplement substrate requirements and improve recombinant protein levels of the essential deoxyerythronolide B synthase (DEBS) which catalyze 6dEB conversion. As a result, the study (1) demonstrates the feasibility of micro‐scale cultures to study E. coli 6dEB production and effectively model larger‐scale cultures; (2) identifies an enhanced medium which generates over 160 mg L?1 6dEB (a 22‐fold improvement over current culture media); and (3) provides new insight and understanding related to the heterologous production of 6dEB from E. coli. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co‐culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co‐culture system by metabolic engineering. In addition, the critical gene of 4‐coumaroyl‐CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi‐copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co‐culture system, which was nearly eight fold to that of the mono‐culture of yeast. This is the first time for the biosynthesis of naringenin in the co‐culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号