首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
    
Here, a 3D printed multiplexed competitive migration assay is reported for characterizing a chemotactic response in the presence of multiple spatially distributed chemoattractants. The utility of the assay is demonstrated by examining the chemotactic response of human glioblastoma cells to spatially opposing chemotactic gradients of epidermal growth factor (EGF) and bradykinin (BK). Competitive migration assays involving spatially opposing gradients of EGF and BK that are optimized in the absence of the second chemoattractant show that 46% more glioblastoma cells migrate toward EGF sources. The migration velocities of human glioblastoma cells toward EGF and BK sources are reduced by 7.6 ± 2.2% and 11.6 ± 6.3% relative to those found in the absence of the spatially opposing chemoattractant. This work provides new insight to the chemotactic response associated with glioblastoma‐vasculature interactions and a versatile, user‐friendly platform for characterizing the chemotactic response of cells in the presence of multiple spatially distributed chemoattractants.  相似文献   

4.
    
Bioprinting is the assembly of three-dimensional (3D) tissue constructs by layering cell-laden biomaterials using additive manufacturing techniques, offering great potential for tissue engineering and regenerative medicine. Such a process can be performed with high resolution and control by personalized or commercially available inkjet printers. However, bioprinting's clinical translation is significantly limited due to process engineering challenges. Upstream challenges include synthesis, cellular incorporation, and functionalization of “bioinks,” and extrusion of print geometries. Downstream challenges address sterilization, culture, implantation, and degradation. In the long run, bioinks must provide a microenvironment to support cell growth, development, and maturation and must interact and integrate with the surrounding tissues after implantation. Additionally, a robust, scaleable manufacturing process must pass regulatory scrutiny from regulatory bodies such as U.S. Food and Drug Administration, European Medicines Agency, or Australian Therapeutic Goods Administration for bioprinting to have a real clinical impact. In this review, recent advances in inkjet-based 3D bioprinting will be presented, emphasizing on biomaterials available, their properties, and the process to generate bioprinted constructs with application in medicine. Current challenges and the future path of bioprinting and bioinks will be addressed, with emphasis in mass production aspects and the regulatory framework bioink-based products must comply to translate this technology from the bench to the clinic.  相似文献   

5.
Recent studies have reported that three‐dimensionally cultured cells have more physiologically relevant functions than two‐dimensionally cultured cells. Cells are three‐dimensionally surrounded by the extracellular matrix (ECM) in complex in vivo microenvironments and interact with the ECM and neighboring cells. Therefore, replicating the ECM environment is key to the successful cell culture models. Various natural and synthetic hydrogels have been used to mimic ECM environments based on their physical, chemical, and biological characteristics, such as biocompatibility, biodegradability, and biochemical functional groups. Because of these characteristics, hydrogels have been combined with microtechnologies and used in organ‐on‐a‐chip applications to more closely recapitulate the in vivo microenvironment. Therefore, appropriate hydrogels should be selected depending on the cell types and applications. The porosity of the selected hydrogel should be controlled to facilitate the movement of nutrients and oxygen. In this review, we describe various types of hydrogels, external stimulation‐based gelation of hydrogels, and control of their porosity. Then, we introduce applications of hydrogels for organ‐on‐a‐chip. Last, we also discuss the challenges of hydrogel‐based three‐dimensional cell culture techniques and propose future directions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:580–589, 2017  相似文献   

6.
    
Current therapies for nerve regeneration within injured tissues have had limited success due to complicated neural anatomy and inhibitory barriers in situ. Recent advancements in 3D bioprinting technologies have enabled researchers to develop novel 3D scaffolds with complex architectures in an effort to mitigate the challenges that beset reliable and defined neural tissue regeneration. Among several possible neuroregenerative treatment approaches that are being explored today, 3D bioprinted scaffolds have the unique advantage of being highly modifiable, which promotes greater resemblance to the native biological architecture of in vivo systems. This high architectural similarity between printed constructs and in vivo structures is thought to facilitate a greater capacity for repair of damaged nerve tissues. In this review, advances of several 3D bioprinting methods are introduced, including laser bioprinting, inkjet bioprinting, and extrusion‐based printing. In addition, the emergence of 4D printing is discussed, which adds a dimension of transformation over time to traditional 3D printing. Finally, an overview of emerging trends in advanced bioprinting materials is provided and their therapeutic potential for application in neural tissue regeneration is evaluated in both the central nervous system and the peripheral nervous system.  相似文献   

7.
    
A capability for analyzing complex cellular communication among tissues is important in drug discovery and development, and in vitro technologies for doing so are required for human applications. A prominent instance is communication between the gut and the liver, whereby perturbations of one tissue can influence behavior of the other. Here, we present a study on human gut‐liver tissue interactions under normal and inflammatory contexts, via an integrative multi‐organ platform comprising human liver (hepatocytes and Kupffer cells), and intestinal (enterocytes, goblet cells, and dendritic cells) models. Our results demonstrated long‐term (>2 weeks) maintenance of intestinal (e.g., barrier integrity) and hepatic (e.g., albumin) functions in baseline interaction. Gene expression data comparing liver in interaction with gut, versus isolation, revealed modulation of bile acid metabolism. Intestinal FGF19 secretion and associated inhibition of hepatic CYP7A1 expression provided evidence of physiologically relevant gut‐liver crosstalk. Moreover, significant non‐linear modulation of cytokine responses was observed under inflammatory gut‐liver interaction; for example, production of CXCR3 ligands (CXCL9,10,11) was synergistically enhanced. RNA‐seq analysis revealed significant upregulation of IFNα/β/γ signaling during inflammatory gut‐liver crosstalk, with these pathways implicated in the synergistic CXCR3 chemokine production. Exacerbated inflammatory response in gut‐liver interaction also negatively affected tissue‐specific functions (e.g., liver metabolism). These findings illustrate how an integrated multi‐tissue platform can generate insights useful for understanding complex pathophysiological processes such as inflammatory organ crosstalk. Biotechnol. Bioeng. 2017;114: 2648–2659. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
9.
10.
    
During normal urination, smooth muscle cells (SMCs) in the lower urinary tract (LUT) are exposed to mechanical signals that have a critical impact on tissue structure and function. Nevertheless, the mechanisms underlying the maintenance of the contractile phenotype of SMCs remain poorly understood. This is due, in part, to a lack of studies that have examined the effects of mechanical loading using three-dimensional (3D) models. In this study, surface modifications of polydimethylsiloxane (PDMS) membrane were evaluated to investigate the effects of cyclic mechanical stimulation on SMC maturation in 3D constructs. Commercially available cell stretching plates were modified with amino or methacrylate groups to promote adhesion of 3D constructs fabricated by bioprinting. After 6 days of stimulation, the effects of mechanical stimulation on the expression of contractile markers at the mRNA and protein levels were analyzed. Methacrylate-modified surfaces supported stable adhesion of the 3D constructs to the membrane and facilitated cyclic mechanical stimulation, which significantly increased the expression of contractile markers at the mRNA and protein levels. These effects were found to be mediated by activation of the p38 MAPK pathway, as inhibition of this pathway abolished the effects of stimulation in a dose-dependent manner. These results provide valuable insights into the role of mechanical signaling in maintaining the contractile phenotype of bladder SMCs, which has important implications for the development of future treatments for LUT diseases.  相似文献   

11.
Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix‐embedded cells. In the present study, we present a strategy to encase a bioprinted, cell‐containing, and soft scaffold with an electrospun mat. The electrospun poly(?‐caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicatein synthesizes polymeric biosilica by polycondensation of ortho‐silicate that is formed from prehydrolyzed TEOS. Biosilica provides a morphogenetically active matrix for the growth and mineralization of osteoblast‐related SaOS‐2 cells in vitro. Analysis of the microstructure of the 300–700 nm thick PCL/TEOS nanofibers, incubated with silicatein and prehydrolyzed TEOS, displayed biosilica deposits on the mats formed by the nanofibers. We conclude and propose that electrospun PCL nanofibers mats, coated with biosilica, may represent a morphogenetically active and protective cover for bioprinted cell/tissue‐like units with a suitable mechanical stability, even if the cells are embedded in a softer matrix.  相似文献   

12.
13.
    
In this study we describe an original, efficient, and innovative printed circuit board (PCB) device able to generate dielectrophoresis-based, software-controlled cages that can be moved to any place inside a microchamber. Depending on their dielectrophoretic properties, eukaryotic cells can be \"entrapped\" in cages and moved under software control. The main conclusion gathered from the experimental data reported is that the PCB device based on dielectrophoresis permits levitation and movement of different tumor cells at different dielectrophoresis conditions. The results presented herein are therefore the basis for experiments aimed at forced interactions or separation of eukaryotic cells using \"lab-on-a-chip.\" In fact, because many cages can be controlled at the same time, and two or more cages can be forced to share the same or a different location, it is possible, in principle, either to bring in contact cells of a differing histotype or to separate them.  相似文献   

14.
    
The liver possesses a unique microenvironment with a complex internal vascular system and cell–cell interactions. Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease, and although much effort has been dedicated to building models to target NAFLD, most in vitro systems rely on simple models failing to recapitulate complex liver functions. Here, an in vitro system is presented to study NAFLD (steatosis) by coculturing human hepatocellular carcinoma (HepG2) cells and umbilical vein endothelial cells (HUVECs) into spheroids. Analysis of colocalization of HepG2–HUVECs along with the level of steatosis reveals that the NAFLD pathogenesis could be better modeled when 20% of HUVECs are presented in HepG2 spheroids. Spheroids with fat supplements progressed to the steatosis stage on day 2, which could be maintained for more than a week without being harmful for cells. Transferring spheroids onto a chip system with an array of interconnected hexagonal microwells proves helpful for monitoring functionality through increased albumin secretions with HepG2–HUVEC interactions and elevated production of reactive oxygen species for steatotic spheroids. The reversibility of steatosis is demonstrated by simply stopping fat‐based diet or by antisteatotic drug administration, the latter showing a faster return of intracellular lipid levels to the basal level.  相似文献   

15.
    
Current in vitro drug screening methods often rely on single‐cell models and are therefore imprecise in predicting drug absorption, distribution, metabolism, excretion, and toxicity. This study presents a method to fabricate 3D printed inserts that are compatible with commercially available titer plates. Hydrogels can be casted into the inserts and cells can be cultured either in or on the hydrogels. Once individual cell cultures are fully differentiated, the three different cell cultures are stacked on top of each other for biological experiments. To show the possibilities of this approach, three tissue models representing the first pass metabolism is used. The three tissue models are based on gelatin hydrogels and Caco‐2, HUVEC, and HepG2 cells to simulate the small intestine, vascular endothelium, and liver, respectively. The device is simple to fabricate, user friendly, and an alternative to microfluidic‐based organ on a chip systems. The presented first pass metabolism study allows for gaining information on drug absorption, distribution, metabolism, and, in the future, excretion in one compact device complying the micro titer plate format.  相似文献   

16.
    
A hanging drop system that allows the multiconfigurational coculture of 3D microtissues is suggested as a versatile platform to promote the formation of functional preconditioned spheroids/microtissues, namely stem‐cell‐derived tissue engineering microtissues, with potential to be applied as scaffold‐free building blocks. Here, superhydrophobic (SH) platforms patterned with wettable regions are adapted for the production and culture of human adipose‐derived stem‐cell spheroids under indirect coculture with 2D layers of different cell types and direct coculture setups. The versatile indirect and direct coculture setups allow the use of cell lines as soluble biomolecules “factories” to continuously modulate microtissues response aspects, including their viability, cell number, and protein expression. This novel application of patterned SH platforms may find application in the massive production of modulated spheroids for the biomedical and pharmaceutical fields, with specific added value in the biofabrication of 3D constructs for tissue regeneration, as disease models, or even for organoids preparation.  相似文献   

17.
Chitosan was used as a matrix to induce three-dimensional spheroids of HepG2 cells. Chitosan films were prepared and used for culturing Hep G2 cells. Attachment kinetics of the cells was studied on the chitosan films. The optimum seeding density of the Hep G2 cells, required for three-dimensional spheroid formation was determined and was found to be 5 × 104/ml. The growth kinetics of Hep G2 cells was studied using (3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) assay, and morphology of the cells was studied through optical photographs taken at various days of culture. The liver cell functions of the spheroids were determined by measuring albumin and urea secretions. The results obtained from these studies have shown that the culture of Hep G2 cells on chitosan matrix taking appropriate seeding density resulted in the formation of three-dimensional spheroids and exhibited higher amount of albumin and urea synthesis compared to monolayer culture. These miniature “liver tissue like” models can be used for in vitro tissue engineering applications like preliminary evaluation of the toxicity of drugs and chemicals.  相似文献   

18.
闫伽宁  胥义 《生物工程学报》2021,37(11):4024-4035
组织器官脱细胞后制备成的脱细胞基质 (Decellularized extracellular matrix,dECM) 含有许多蛋白质和生长因子,不仅能够为细胞提供三维支架还能够调控细胞再生,是目前最具有生物结构的生物材料。3D生物打印可以层层打印dECM和自体细胞的组合,构建载细胞组织结构。文中综述了不同来源的组织器官脱细胞基质生物墨水制备方法,包括脱细胞、交联等,以及脱细胞基质生物墨水在生物打印中的应用,并展望了其未来的应用前景。  相似文献   

19.
    
Three-dimensional (3D) printers are attracting attention as a method for arranging and building cells in three dimensions. Bioprinting technology has potential in tissue engineering for the fabrication of scaffolds, cells, and tissues. However, these various printing technologies have limitations with respect to print resolution and due to the characteristics of bioink such as viscosity. We report a method for constructing of 3D tissues with a “microscopic painting device using a painting needle method” that, when used with the layer-by-layer (LbL) cell coating technique, replaces conventional methods. This method is a technique of attaching the high viscosity bioink to the painting needle tip and arranging it on a substrate, and can construct 3D tissues without damage to cells. Cell viability is the same before and after painting. We used this biofabrication device to construct 3D cardiac tissue (LbL-3D Heart) using human-induced pluripotent stem cell–derived cardiomyocytes. The constructed LbL-3D Heart chips had multiple layers with a thickness of 60 µm, a diameter of 1.1 mm, and showed synchronous beating (50–60 beats per min). The aforementioned device and method of 3D tissue construction can be applied to various kinds of tissue models and would be a useful tool for pharmaceutical applications.  相似文献   

20.
排放到环境中的各种农药、多环芳烃、卤代芳烃等有机污染物以及阻燃剂等新兴污染物,对环境污染、农产品质量和环境安全造成了沉重负担。因此,有效去除环境中的有机污染物已成为迫在眉睫的挑战。3D生物打印技术已经在医学材料、制药等行业中发挥着重要作用。现在,越来越多的微生物被确定适合通过3D生物打印生产具有复杂结构和功能的生物材料。微生物的3D生物打印越来越受到环境微生物学家和生物技术专家的关注。本文综述了用于污染物微生物去除的不同3D生物打印技术的原理和优缺点,及用于微生物生物修复技术的可行性,并指出了可能遇到的限制和挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号