首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Farnesol (FOH) production has been carried out in metabolically engineered Escherichia coli. FOH is formed through the depyrophosphorylation of farnesyl pyrophosphate (FPP), which is synthesized from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by FPP synthase. In order to increase FPP synthesis, E. coli was metabolically engineered to overexpress ispA and to utilize the foreign mevalonate (MVA) pathway for the efficient synthesis of IPP and DMAPP. Two‐phase culture using a decane overlay of the culture broth was applied to reduce volatile loss of FOH produced during culture and to extract FOH from the culture broth. A FOH production of 135.5 mg/L was obtained from the recombinant E. coli harboring the pTispA and pSNA plasmids for ispA overexpression and MVA pathway utilization, respectively. It is interesting to observe that a large amount of FOH could be produced from E. coli without FOH synthase by the augmentation of FPP synthesis. Introduction of the exogenous MVA pathway enabled the dramatic production of FOH by E. coli while no detectable FOH production was observed in the endogenous MEP pathway‐only control. Biotechnol. Bioeng. 2010;107: 421–429. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Sesquiterpenes are important materials in pharmaceuticals and industry. Metabolic engineering has been successfully used to produce these valuable compounds in microbial hosts. However, the microbial potential of sesquiterpene production is limited by the poor heterologous expression of plant sesquiterpene synthases and the deficient FPP precursor supply. In this study, we engineered E. coli to produce α-farnesene using a codon-optimized α-farnesene synthase and an exogenous MVA pathway. Codon optimization of α-farnesene synthase improved both the synthase expression and α-farnesene production. Augmentation of the metabolic flux for FPP synthesis conferred a 1.6- to 48.0-fold increase in α-farnesene production. An additional increase in α-farnesene production was achieved by the protein fusion of FPP synthase and α-farnesene synthase. The engineered E. coli strain was able to produce 380.0 mg/L of α-farnesene, which is an approximately 317-fold increase over the initial production of 1.2 mg/L.  相似文献   

3.
In insects, farnesyl pyrophosphate (FPP) is converted to juvenile hormone (JH) via a conserved pathway consisting of isoprenoid-derived metabolites. The first step of this pathway is presumed to be hydrolysis of FPP to farnesol in the ring gland. Based on alignment of putative phosphatases from Drosophila melanogaster with the phosphatase domain of soluble epoxide hydrolase, Phos2680 and Phos15739 with conserved phosphatase motifs were identified, cloned and purified. Both D. melanogaster phosphatases hydrolyzed para-nitrophenyl phosphate, however, Phos15739 also hydrolyzed FPP with a Kcat/Km of 2.1 × 105 M−1 s−1. RT-PCR analysis revealed that Phos15739 was expressed in the ring gland and its expression was correlated with JHIII titer during development of D. melanogaster. N-acetyl-S-geranylgeranyl-l-cysteine was found to be a potent inhibitor of Phos15739 with an IC50 value of 4.4 μM. Thus, our data identify Phos15739 as a FPP phosphatase that likely catalyzes the hydrolysis of FPP to farnesol in D. melanogaster.  相似文献   

4.
In biotechnology, the heterologous biosynthesis of isoprenoid compounds in Escherichia coli is a field of great interest and growth. In order to achieve higher isoprenoid yields in heterologous E. coli strains, it is necessary to quantify the pathway intermediates and adjust gene expression. In this study, we developed a precise and sensitive nonradioactive method for the simultaneous quantification of the isoprenoid precursors farnesyl diphosphate (FPP) and geranylgeranyl diphosphate (GGPP) in recombinant and wild-type E. coli cells. The method is based on the dephosphorylation of FPP and GGPP into the respective alcohols and involves their in situ extraction followed by separation and detection using gas chromatography–mass spectrometry. The integration of a geranylgeranyl diphosphate synthase gene into the E. coli chromosome leads to the accumulation of GGPP, generating quantities as high as those achieved with a multicopy expression vector. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. Vallon and S. Ghanegaonkar contributed equally to this work.  相似文献   

5.
Isoprene is an aviation fuel of high quality and an important polymer building block in the synthetic chemistry industry. In light of high oil prices, sustained availability, and environmental concerns, isoprene from renewable materials is contemplated as a substitute for petroleum-based product. Escherichia coli with advantages over other wild microorganisms, is considered as a powerful host for biofuels and chemicals. Here, we constructed a synthetic pathway of isoprene in E. coli by introducing an isoprene synthase (ispS) gene from Populus nigra, which catalyzes the conversion of dimethylallyl diphosphate (DMAPP) to isoprene. To improve the isoprene production, we overexpressed the native 1-deoxy-d-xylulose-5-phosphate (DXP) synthase gene (dxs) and DXP reductoisomerase gene (dxr) in E. coli, which catalyzed the first step and the second step of MEP pathway, respectively. The fed-batch fermentation results showed that overexpression of DXS is helpful for the improvement of isoprene production. Surprisingly, heterologous expression of dxs and dxr from Bacillus subtilis in the E. coli expressing ispS resulted in a 2.3-fold enhancement of isoprene production (from 94 to 314 mg/L). The promising results showed that dxs and dxr from B. subtilis functioned more efficiently on the enhancement of isoprene production than native ones. This could be caused by the consequence of great difference in protein structures of the two original DXSs. It could be practical to produce isoprene in E. coli via MEP pathway through metabolic engineering. This work provides an alternative way for production of isoprene by engineered E. coli via MEP pathway through metabolic engineering.  相似文献   

6.
Squalene synthase inhibitors significantly accelerate the production of farnesol by various microorganisms. However, farnesol production by Saccharomyces cerevisiae ATCC 64031, in which the squalene synthase gene is deleted, was not affected by the inhibitors, indicating that farnesol accumulation is enhanced in the absence of squalene synthase activity. The combination of diphenylamine as an inhibitor of carotenoid biosynthesis and a squalene synthase inhibitor increases geranylgeraniol production by a yeast, Rhodotorula rubra NBRC 0870. An ent-kauren synthase inhibitor also enhances the production of farnesol and geranylgeraniol by a filamentous fungus, Gibberella fujikuroi NBRC 30336. These results indicate that the inhibition of downstream enzymes from prenyl diphosphate synthase leads to the production of farnesol and geranylgeraniol.  相似文献   

7.
Production of Z-type farnesyl diphosphate (FPP) has not been reported in Escherichia coli. Here we present the fusion enzyme (ILRv) of E. coli E,E-FPP synthase (IspA) and Mycobacterium tuberculosis Z,E-FPP synthase (Rv1086), which can produce primarily Z,E-FPP rather than E,E-FPP, the predominant stereoisomer found in most organisms. Z,E-farnesol (FOH) was produced from E. coli harboring the bottom portion of the MVA pathway and the fusion FPP synthase (ILRv) at a titer of 115.6 mg/L in 2 YT medium containing 1% (v/v) glycerol as a carbon source and 5 mM mevalonate. The Z,E-FOH production was improved by 15-fold, compared with 7.7 mg/L obtained from the co-overexpression of separate IspA and Rv1086. The Z,E-FPP was not metabolized in native metabolic pathways of E. coli. It would be of interest to produce Z,E-FPP derived sesquiterpenes from recombinant E. coli due to no loss of Z,E-FPP substrate in endogenous metabolism of the host strain.  相似文献   

8.
Saccharomyces cerevisiae erg9 mutants blocked at squalene synthase require ergosterol for growth and produce E,E‐farnesol. Typically, at least half the amount of farnesol remains cell associated. Practically insoluble in water, farnesol can be extracted from production cultures of the erg9 mutants using either methanol/hexane or poly(styrene‐co‐divinylbenzene) beads. The first method consumes more solvents and requires centrifugation to clear an interface emulsion. The second method uses 50% less solvent and the beads can be used repeatedly for extraction. The solvent‐free crude extract from the beads extraction contained higher concentration of farnesol (76–77%) than that from the solvent extraction (61–65%). Farnesol was obtained after normal‐phase chromatography in high overall recovery (94%) and purity (99%). © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
[目的]法尼醇(FOH,C15H26O)是一种具有芳香气味的非环状倍半萜醇,被广泛应用于化妆品和医学药物的工业化生产,也可作为航空燃料的理想替代品.具有食品级安全性的酿酒酵母细胞能够合成内源性法尼醇,但其产量很低,无法满足工业生产的需要.因此,需要采用代谢工程手段,改造法尼醇合成途径,以有效提高法尼醇在酿酒酵母中的产量...  相似文献   

10.
Escherichia coli is an attractive candidate as a host for polyketide production and has been engineered to produce the erythromycin precursor polyketide 6-deoxyerythronolide B (6dEB). In order to identify and optimize parameters that affect polyketide production in engineered E. coli, we first investigated the supply of the extender unit (2S)-methylmalonyl-CoA via three independent pathways. Expression of the Streptomyces coelicolor malonyl/methylmalonyl-CoA ligase (matB) pathway in E. coli together with methylmalonate feeding resulted in the accumulation of intracellular methylmalonyl-CoA to as much as 90% of the acyl-CoA pool. Surprisingly, the methylmalonyl-CoA generated from the matB pathway was not converted into 6dEB. In strains expressing either the S. coelicolor propionyl-CoA carboxylase (PCC) pathway or the Propionibacteria shermanii methylmalonyl-CoA mutase/epimerase pathway, methylmalonyl-CoA accumulated up to 30% of the total acyl-CoA pools, and 6dEB was produced; titers were fivefold higher when strains contained the PCC pathway rather than the mutase pathway. When the PCC and mutase pathways were expressed simultaneously, the PCC pathway predominated, as indicated by greater flux of 13C-propionate into 6dEB through the PCC pathway. To further optimize the E. coli production strain, we improved 6dEB titers by integrating the PCC and mutase pathways into the E. coli chromosome and by expressing the 6-deoxyerythronolide B synthase (DEBS) genes from a stable plasmid system.S. Murli and J. Kennedy contributed equally to this work  相似文献   

11.
Several integral membrane proteins exhibiting undecaprenyl-pyrophosphate (C55-PP) phosphatase activity were previously identified in Escherichia coli that belonged to two distinct protein families: the BacA protein, which accounts for 75% of the C55-PP phosphatase activity detected in E. coli cell membranes, and three members of the PAP2 phosphatidic acid phosphatase family, namely PgpB, YbjG and LpxT. This dephosphorylation step is required to provide the C55-P carrier lipid which plays a central role in the biosynthesis of various cell wall polymers. We here report detailed investigations of the biochemical properties and membrane topology of the BacA protein. Optimal activity conditions were determined and a narrow-range substrate specificity with a clear preference for C55-PP was observed for this enzyme. Alignments of BacA protein sequences revealed two particularly well-conserved regions and several invariant residues whose role in enzyme activity was questioned by using a site-directed mutagenesis approach and complementary in vitro and in vivo activity assays. Three essential residues Glu21, Ser27, and Arg174 were identified, allowing us to propose a catalytic mechanism for this enzyme. The membrane topology of the BacA protein determined here experimentally did not validate previous program-based predicted models. It comprises seven transmembrane segments and contains in particular two large periplasmic loops carrying the highly-conserved active site residues. Our data thus provide evidence that all the different E. coli C55-PP phosphatases identified to date (BacA and PAP2) catalyze the dephosphorylation of C55-PP molecules on the same (outer) side of the plasma membrane.  相似文献   

12.
The chain elongation reaction catalyzed by polyprenyl diphosphate synthases is the fundamental building reaction in the isoprenoid pathway. During chain elongation, the hydrocarbon moiety in an allylic isoprenoid diphosphate is added to the carbon–carbon double bond of isopentenyl diphosphate (IPP). The chain elongation enzymes can be divided into two genetically different families depending on whether the stereochemistry of the newly formed double bond during each cycle of chain elongation is E or Z. Farnesyl diphosphate (FPP) synthase, a member of the E-double bond family, is the best studied of the chain elongation enzymes and serves as a paradigm for understanding the reactions catalyzed by E-polyprenyl diphosphate synthases. The mechanism for chain elongation is a stereoselective electrophilic alkylation of the carbon–carbon double bond in IPP by the allylic substrate. X-ray structures of avian and E. coli FPP synthases have provided important insights about the mechanism for chain elongation and a structural basis for understanding the stereochemistry of the reaction.This review is dedicated to Professor Rodney Croteau on the occasion of his 60th birthday.  相似文献   

13.
The pentafunctional AROM protein in Aspergillus nidulans and other fungi catalyses five consecutive enzymatic steps leading to the production of 5-enolpyruvylshikimate 3-phosphate (EPSP) in the shikimate pathway. The AROM protein has five separate enzymatic domains that have previously been shown to display a range of abilities to fold and function in isolation as monofunctional enzymes. In this communication, we report (1) the stable overproduction of a bifunctional protein containing the 3-dehydroquinate (DHQ) synthase and EPSP synthase activities in Escherichia coli to around 10% of the total cell protein; (2) that both the DHQ synthase and EPSP synthase activities in the over-produced fragment are enzymatically active as judged by their ability to complement aroA and aroB mutants of E. coli; (3) that the EPSP synthase domain is only enzymatically active when covalently attached to the DHQ synthase domain (the cis arrangement). When DHQ synthase and EPSP synthase are produced concomitantly by transcribing sequences encoding the individual domains from separate plasmids in the same bacterial cell (the trans arrangement) no overproduction or enzyme activity can be detected for the EPSP synthase domain; (4) the EPSP synthase domain can be stably overproduced as a fusion protein with glutathione S-transferase (GST), however the EPSP synthase in this instance is enzymatically inactive; (5) a protein containing an enzymatically inactive DHQ synthase domain in the cis arrangement with EPSP synthase domain is stably overproduced with enzymatically active EPSP synthase; (6) the two C-terminal domains of the AROM protein specifying the 3-dehydroquinase and shikimate dehydrogenase domains can be overproduced in A. nidulans using a specially constructed expression vector. This same bi-domain fragment however is not produced in E. coli when identical coding sequences are transcribed from a prokaryotic expression vector. These data support the view that multifunctional/multidomain proteins do not solely consist of independent units covalently linked together, but rather that certain individual domains interact to varying degrees to stabilise enzyme activity.  相似文献   

14.
The lycopene synthetic pathway was engineered in Escherichia coli using the carotenoid genes (crtE, crtB, and crtI) of Pantoea agglomerans and Pantoea ananatis. E. coli harboring the P. agglomerans crt genes produced 27 mg/l of lycopene in 2YT medium without isopropyl-beta-d-thiogalactopyranoside (IPTG) induction, which was twofold higher than that produced by E. coli harboring the P. ananatis crt genes (12 mg/l lycopene) with 0.1 mM IPTG induction. The crt genes of P. agglomerans proved better for lycopene production in E. coli than those of P. ananatis. The crt genes of the two bacteria were also compared in E. coli harboring the mevalonate bottom pathway, which was capable of providing sufficient carotenoid building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), with exogenous mevalonate supplementation. Lycopene production significantly increased using the mevalonate bottom pathway and 60 mg/l of lycopene was obtained with the P. agglomerans crt genes, which was higher than that obtained with the P. ananatis crt genes (35 mg/l lycopene). When crtE among the P. ananatis crt genes was replaced with P. agglomerans crtE or Archaeoglobus fulgidus gps, both lycopene production and cell growth were similar to that obtained with P. agglomerans crt genes. The crtE gene was responsible for the observed difference in lycopene production and cell growth between E. coli harboring the crt genes of P. agglomerans and P. ananatis. As there was no significant difference in lycopene production between E. coli harboring P. agglomerans crtE and A. fulgidus gps, farnesyl diphosphate (FPP) synthesis was not rate-limiting in E. coli. Sang-Hwal Yoon and Ju-Eun Kim: These authors contributed equally to this work.  相似文献   

15.
(2S)-Flavanones (naringenin and pinocembrin) are key intermediates in the flavonoid biosynthetic pathway in plants. Recombinant Escherichia coli cells containing four genes for a phenylalanine ammonia-lyase, cinnamate/coumarate:CoA ligase, chalcone synthase, and chalcone isomerase, in addition to the acetyl-CoA carboxylase, have been established for efficient production of (2S)-naringenin from tyrosine and (2S)-pinocembrin from phenylalanine. Further introduction of the flavone synthase I gene from Petroselinum crispum under the control of the T7 promoter and the synthetic ribosome-binding sequence in pACYCDuet-1 caused the E. coli cells to produce flavones: apigenin (13 mg/l) from tyrosine and chrysin (9.4 mg/l) from phenylalanine. Introduction into the E. coli cells of the flavanone 3β-hydroxylase and flavonol synthase genes from the plant Citrus species led to production of flavonols: kaempferol (15.1 mg/l) from tyrosine and galangin (1.1 mg/l) from phenylalanine. The combinatorial biosynthesis of the flavones and flavonols in E. coli is promising for the construction of a library of various flavonoid compounds and un-natural flavonoids in bacteria.  相似文献   

16.
Phage infection is common during the production of L-threonine by E. coli, and low L-threonine production and glucose conversion percentage are bottlenecks for the efficient commercial production of L-threonine. In this study, 20 antiphage mutants producing high concentration of L-threonine were obtained by atmospheric and room temperature plasma (ARTP) mutagenesis, and an antiphage E. coli variant was characterized that exhibited the highest production of L-threonine Escherichia coli ([E. coli] TRFC-AP). The elimination of fhuA expression in E. coli TRFC-AP was responsible for phage resistance. The biomass and cell growth of E. coli TRFC-AP showed no significant differences from those of the parent strain (E. coli TRFC), and the production of L-threonine (159.3 g L−1) and glucose conversion percentage (51.4%) were increased by 10.9% and 9.1%, respectively, compared with those of E. coli TRFC. During threonine production (culture time of 20 h), E. coli TRFC-AP exhibited higher activities of key enzymes for glucose utilization (hexokinase, glucose phosphate dehydrogenase, phosphofructokinase, phosphoenolpyruvate carboxylase, and PYK) and threonine synthesis (glutamate synthase, aspartokinase, homoserine dehydrogenase, homoserine kinase and threonine synthase) compared to those of E. coli TRFC. The analysis of metabolic flux distribution indicated that the flux of threonine with E. coli TRFC-AP reached 69.8%, an increase of 16.0% compared with that of E. coli TRFC. Overall, higher L-threonine production and glucose conversion percentage were obtained with E. coli TRFC-AP due to increased activities of key enzymes and improved carbon flux for threonine synthesis.  相似文献   

17.
A sensitive method was developed for measuring farnesyl diphosphate (FPP) accumulation in a mutant strain of Saccharomyces cerevisiae. The strain was blocked at squalene synthase (ERG9 gene) in the isoprenoid pathway and had the catalytic domain of the 3-hydroxy-3-methylglutaryl coenzyme A reductase gene integrated into the chromosome. It required ergosterol for growth and produced E,E-farnesol. The method was based on the isolation of FPP using the anion exchanger Macro Prep High Q and conversion of FPP to E,E-farnesol with alkaline phosphatase. Farnesol was measured using gas chromatography-mass spectrometry. Background farnesol in the cell-free extract was also retained by the anion exchanger, but was removed with repeated washing with methanol. Both 1M NaCl and 40% (v/v) methanol were required in the elution buffer to effectively elute FPP. The preparation of cell-free extract in Bis-Tris propane/HCl, pH 7, buffer containing 0.025% (w/v) Triton X-100 and 15 mM MgCl(2) provided optimum conditions for the stabilization of FPP.  相似文献   

18.
Undecaprenyl pyrophosphate synthase (UPPS) is a cis-type prenyltransferases which catalyzes condensation reactions of farnesyl diphosphate (FPP) with eight isopentenyl pyrophosphate (IPP) units to generate C55 product. In this study, we used two analogues of FPP, 2-fluoro-FPP and [1,1-2H2]FPP, to probe the reaction mechanism of Escherichia coli UPPS. The reaction rate of 2-fluoro-FPP with IPP under single-turnover condition is similar to that of FPP, consistent with the mechanism without forming a farnesyl carbocation intermediate. Moreover, the deuterium secondary KIE of 0.985 ± 0.022 measured for UPPS reaction using [1,1-2H2]FPP supports the associative transition state. Unlike the sequential mechanism used by trans-prenyltransferases, our data demonstrate E. coli UPPS utilizes the concerted mechanism.  相似文献   

19.
The ispA gene encoding farnesyl pyrophosphate (FPP) synthase from Escherichia coli and the crtM gene encoding 4,4′-diapophytoene (DAP) synthase from Staphylococcus aureus were overexpressed and purified for use in vitro. Steady-state kinetics for FPP synthase and DAP synthase, individually and in sequence, were determined under optimized reaction conditions. For the two-step reaction, the DAP product was unstable in aqueous buffer; however, in situ extraction using an aqueous-organic two-phase system resulted in a 100% conversion of isopentenyl pyrophosphate and dimethylallyl pyrophosphate into DAP. This aqueous-organic two-phase system is the first demonstration of an in vitro carotenoid synthesis pathway performed with in situ extraction, which enables quantitative conversions. This approach, if extended to a wide range of isoprenoid-based pathways, could lead to the synthesis of novel carotenoids and their derivatives.  相似文献   

20.
Coenzyme Q10 (CoQ10), like other CoQs of various organisms, plays indispensable roles not only in energy generation but also in several other processes required for cells’ survival. In this study, a gene encoding for a decaprenyl diphosphate synthase (Rsdds) was cloned from Rhodobacter sphaeroides in Escherichia coli. The in vivo catalytic activity and product specificity of Rsdds were compared with those of a counterpart enzyme from Agrobacterium tumefaciens (Atdds) in E. coli as a heterologous host. In contrast with Atdds, Rsdds showed lower catalytic activity but higher product specificity for CoQ10 production, as indicated by the amount of CoQ9 formation. The higher product specificity of Rsdds was also confirmed by utilizing both Rsdds and Atdds for in vitro synthesis of polyprenyl diphosphates. Thin layer chromatography indicated that the Rsdds enzyme resulted in relatively much less solanesyl diphosphate formation. The purified Rsdds catalyzed the addition of isopentenyl diphosphate to dimethyl allyl diphosphate, geranyl diphosphate, ω,E,E-farnesyl diphosphate (FPP), and ω,E,E,E-geranylgeranyl diphosphate as priming substrates. The kinetic parameters of V max (pmol/min), K M (μM), k cat (1/min), and k cat /K M of the enzyme using FPP as the most appropriate substrate were determined to be 264.6, 13.1, 8.8, and 0.67, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号