首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jha AK  Colubri A  Zaman MH  Koide S  Sosnick TR  Freed KF 《Biochemistry》2005,44(28):9691-9702
A central issue in protein folding is the degree to which each residue's backbone conformational preferences stabilize the native state. We have studied the conformational preferences of each amino acid when the amino acid is not constrained to be in a regular secondary structure. In this large but highly restricted coil library, the backbone preferentially adopts dihedral angles consistent with the polyproline II conformation rather than alpha or beta conformations. The preference for the polyproline II conformation is independent of the degree of solvation. In conjunction with a new masking procedure, the frequencies in our coil library accurately recapitulate both helix and sheet frequencies for the amino acids in structured regions, as well as polyproline II propensities. Therefore, structural propensities for alpha-helices and beta-sheets and for polyproline II conformations in unfolded peptides can be rationalized solely by local effects. In addition, these propensities are often strongly affected by both the chemical nature and the conformation of neighboring residues, contrary to the Flory isolated residue hypothesis.  相似文献   

2.
Evidence for a gamma-turn motif in antifreeze glycopeptides.   总被引:2,自引:0,他引:2       下载免费PDF全文
Knowledge of the secondary structure of antifreeze peptides (AFPs) and glycopeptides (AFGPs) is crucial to understanding the mechanism by which these molecules inhibit ice crystal growth. A polyproline type II helix is perhaps the most widely accepted conformation for active AFGPs; however, random coil and alpha-helix conformations have also been proposed. In this report we present vibrational spectroscopic evidence that the conformation of AFGPs in solution is not random, not alpha-helical, and not polyproline type II. Comparison of AFGP amide vibrational frequencies with those observed and calculated for beta and gamma-turns in other peptides strongly suggests that AFGPs contain substantial turn structure. Computer-generated molecular models were utilized to compare gamma-turn, beta-turn, and polyproline II structures. The gamma-turn motif is consistent with observed amide frequencies and results in a molecule with planar symmetry with respect to the disaccharides. This intriguing conformation may provide new insight into the unusual properties of AFGPs.  相似文献   

3.
The polyproline‐II helix is the most extended naturally occurring helical structure and is widely present in polar, exposed stretches and “unstructured” denatured regions of polypeptides. Can it be hydrophobic? In this study, we address this question using oligomeric peptides formed by a hydrophobic proline analogue, (2S,3aS,7aS)‐octahydroindole‐2‐carboxylic acid (Oic). Previously, we found the molecular principles underlying the structural stability of the polyproline‐II conformation in these oligomers, whereas the hydrophobicity of the peptide constructs remains to be examined. Therefore, we investigated the octan‐1‐ol/water partitioning and inclusion in detergent micelles of the oligo‐Oic peptides. The results showed that the hydrophobicity is remarkably enhanced in longer oligomeric sequences, and the oligo‐Oic peptides with 3 to 4 residues and higher are specific towards hydrophobic environments. This contrasts significantly to the parent oligoproline peptides, which were moderately hydrophilic. With these findings, we have demonstrated that the polyproline‐II structure is compatible with nonpolar media, whereas additional manipulations of the terminal functionalities feature solubility in extremely nonpolar solvents such as hexane.  相似文献   

4.
Celiac Sprue, or gluten-sensitive enteropathy, is an inheritable human disease of the small intestine that is triggered by the dietary intake of gluten. Recently, several Pro- and Gln-rich peptide sequences (most notably PQPQLPY and analogs) have been identified from gluten with potent immunogenic activity toward CD4(+) T cells from small intestinal biopsies of Celiac Sprue patients. These peptides have three unusual properties. First, they are relatively stable toward further proteolysis by gastric, pancreatic, and intestinal enzymes. Second, they are recognized and deamidated by human tissue transglutaminase (tTGase) with high selectivity. Third, tTGase-catalyzed deamidation enhances their affinity for HLA-DQ2, the disease-specific class II major histocompatibility complex heterodimer. In an attempt to seek a mechanistic explanation for these properties, we undertook secondary structural studies on PQPQLPY and its analogs. Circular dichroism studies on a series of monomeric and dimeric analogs revealed a strong polyproline II helical propensity in a subset of them. Two-dimensional nuclear magnetic resonance spectroscopic analysis confirmed a polyproline II conformation of PQPQLPY, and was also used to elucidate the secondary structure of the most helical variant, (D-P)QPQLPY. Remarkably, a strong correlation was observed between polyproline II content of naturally occurring gluten peptides and the specificity of human tTGase toward these substrates. Analogs with up to two D-amino acid residues retained both polyproline II helical content and transglutaminase affinity. Since the Michaelis constant (K(m)) is the principal determinant of tTGase specificity for naturally occurring gluten peptides and their analogs, our results suggest that the tTGase binding site may have a preference for polyproline II helical substrates. If so, these insights could be exploited for the design of selective small molecule inhibitors of this pharmacologically important enzyme.  相似文献   

5.
The polyproline II (PPII) conformation of protein backbone is an important secondary structure type. It is unusual in that, due to steric constraints, its main-chain hydrogen-bond donors and acceptors cannot easily be satisfied. It is unable to make local hydrogen bonds, in a manner similar to that of alpha-helices, and it cannot easily satisfy the hydrogen-bonding potential of neighboring residues in polyproline conformation in a manner analogous to beta-strands. Here we describe an analysis of polyproline conformations using the HOMSTRAD database of structurally aligned proteins. This allows us not only to determine amino acid propensities from a much larger database than previously but also to investigate conservation of amino acids in polyproline conformations, and the conservation of the conformation itself. Although proline is common in polyproline helices, helices without proline represent 46% of the total. No other amino acid appears to be greatly preferred; glycine and aromatic amino acids have low propensities for PPII. Accordingly, the hydrogen-bonding potential of PPII main-chain is mainly satisfied by water molecules and by other parts of the main-chain. Side-chain to main-chain interactions are mostly nonlocal. Interestingly, the increased number of nonsatisfied H-bond donors and acceptors (as compared with alpha-helices and beta-strands) makes PPII conformers well suited to take part in protein-protein interactions.  相似文献   

6.
Macrocycles are interesting molecules because their topological features and constrained properties significantly affect their chemical, physical, biological, and self‐assembling properties. In this report, we synthesized unique macrocyclic peptides composed of both an α‐helix and a polyproline segment and analyzed their conformational properties. We found that the molecular stiffness of the rod‐like polyproline segment and the relative orientation of the two different helical segments strongly affect the efficiency of the macrocyclization reaction. Conformational analyses showed that both the α‐helix and the polyproline II helix coexisted within the macrocyclic peptides and that the polyproline segment exerts significant effect on the overall helical stability and conformation of the α‐helical segment. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 279–286, 2014.  相似文献   

7.
Does aqueous solvent discriminate among peptide conformers? To address this question, we computed the solvation free energy of a blocked, 12‐residue polyalanyl‐peptide in explicit water and analyzed its solvent structure. The peptide was modeled in each of 4 conformers: α‐helix, antiparallel β‐strand, parallel β‐strand, and polyproline II helix (PII). Monte Carlo simulations in the canonical ensemble were performed at 300 K using the CHARMM 22 forcefield with TIP3P water. The simulations indicate that the solvation free energy of PII is favored over that of other conformers for reasons that defy conventional explanation. Specifically, in these 4 conformers, an almost perfect correlation is found between a residue's solvent‐accessible surface area and the volume of its first solvent shell, but neither quantity is correlated with the observed differences in solvation free energy. Instead, solvation free energy tracks with the interaction energy between the peptide and its first‐shell water. An additional, previously unrecognized contribution involves the conformation‐dependent perturbation of first‐shell solvent organization. Unlike PII, β‐strands induce formation of entropically disfavored peptide:water bridges that order vicinal water in a manner reminiscent of the hydrophobic effect. The use of explicit water allows us to capture and characterize these dynamic water bridges that form and dissolve during our simulations. Proteins 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

8.
The mean solution conformation of tetrapeptide fragments spanning the hinge region of human IgA1 was investigated by CD and 13C-NMR methods. Distinct conformational differences for the partial sequences of IgA1 were found. In a series of tetrapeptides having the Thr-Pro-Pro-Thr sequence, the Pro-Pro fragment was ordered to the structure of a type II polyproline helix, but with unordered forms prevailing in the equilibria. In the case of the Pro-Pro-Thr-Pro sequence, a distinct preference for the beta-turn conformation was found. Acetylation of this tetrapeptide shifts the equilibrium towards unordered forms containing some elements of the type II polyproline helix. The peptide Thr-Pro-Ser-Pro exists predominantly in the beta-turn conformation whereas Pro-Ser-Pro-Ser-NH2 has, for the most part an unordered conformation.  相似文献   

9.
To structurally characterize the nonaggregated state of the amyloid beta peptide, which assembles into the hallmark fibrils of Alzheimer disease, we investigated the conformation of the N-terminal extracellular peptide fragment Abeta(1-28) in D(2)O at acidic pD by utilizing combined FTIR and isotropic and anisotropic Raman spectra measured between 1550 and 1750 cm(-1). Peptide aggregation is avoided under the conditions chosen. The amide I' band was found to exhibit a significant noncoincidence effect in that the first moment of the anisotropic Raman and of the IR band profile appears red-shifted from that of the isotropic Raman scattering. A simulation based on a coupled oscillator model involving all 27 amide I' modes of the peptide reveals that the peptide adopts a predominantly polyproline II conformation. Our results are inconsistent with the notion that the monomeric form of Abeta(1-28) is a totally disordered, random-coil structure. Generally, they underscore the notion that polyproline II is a characteristic motif of the unfolded state of proteins and peptides.  相似文献   

10.
The structure of potato (Solanum tuberosum) lectin, which is a hydroxyproline-rich glycoprotein, has been investigated by circular dichroism. The spectra of the native lectin, and of the oxidized, reduced and carboxymethylated and deglycosylated derivatives were examined, as was a hydroxyproline-rich glycopeptide and its deglycosylated derivative. It is concluded that the lectin contains about 35% polyproline II conformation, 34% type II beta-turn and 31% irregular conformation. No indications were found for the presence of alpha-helix or beta-sheet conformations. The polyproline II conformation is heat-stable, but is markedly destabilized by deglycosylation. The type II beta-turn is destabilized by cleavage of disulphide bonds.  相似文献   

11.
In view of the observation that the concentration of hydrogen sulfide in brains with Alzheimer’s disease (AD) is lower than that in normal brains and in line with our previous studies indicating that additional content in the aqueous environment (milieu) of a peptide can change its local energetic preference from a polyproline II (P) to a β conformation (and therefore its tendency to form the β-chain structures that lead to the amyloid plaques associated with the disease), we have studied the effect of H2S concentration on such propensity in a simple model peptide, the alanine dipeptide (ADP). The two concentration states are represented by ADP(H2O)18(H2S) and ADP(H2O)18(H2S)2. Ab initio calculations of these structures show that the lowest energy of the former is a β conformation while that of the latter is a P, mirroring the observed AD results and strengthening our proposal that amyloid diseases are better viewed in the context of a protein milieu-folding paradigm.  相似文献   

12.
The salt-extractable hydroxyproline-rich cell wall glycoprotein from carrot (Daucus carota L.) roots is composed of 35% (w/w) protein, 3% (w/w) galactose, and 62% (w/w) arabinose. The arabinose is attached to hydroxyproline as tetra- and trisaccharides. The circular dichroism of the glycoprotein shows that it is completely in the polyproline II conformation. After deglycosylation of the glycoprotein, the polyproline II conformation of the peptide backbone was lost. This indicates that the carbohydrate reinforces the polyproline II conformation.  相似文献   

13.
Oligo(lactic acid) is an ester‐analogue of short oligoalanine sequence and adopts a rigid left‐handed helical structure. In this study, oligo(lactic acid) was incorporated into oligoalanine sequences and their conformations were studied by vibrational circular dichroism and electronic circular dichroism spectroscopy. The results suggested that oligo(lactic acid) moiety in these sequences maintains a left‐handed helix and increases the conformational propensity of the oligoalanine moiety to form a left‐handed polyproline type II‐like helix. The importance of the chirality of oligo(lactic acid) moiety for the oligoalanine conformation was also studied. The results obtained in this study should be useful in developing ester‐containing oligopeptides that function better than normal peptides.  相似文献   

14.
The structural requirements for the antibacterial activity of a pseudosymmetric 13-residue peptide, tritrypticin, were analyzed by combining pattern recognition in protein structures, the structure-activity knowledge-base, and circular dichroism. The structure-activity analysis, based on various deletion analogs, led to the identification of two minimal functional peptides, which by themselves exhibit adequate antibacterial activity against Escherichia coli and Salmonella typhimurium. The common features between these two peptides are that they both share an aromatic-proline-aromatic (ArProAr) sequence motif, and their sequences are retro with respect to one another. The pattern searches in protein structure data base using the ArProAr motif led to the identification of two distinct conformational clusters, namely polyproline type II and beta-turn, which correspond to the observed solution structures of the two minimal functional analogs. The role of different residues in structure and function of tritrypticin was delineated by analyzing antibacterial activity and circular dichroism spectra of various designed analogs. Three main results arise from this study. First, the ArProAr sequence motif in proteins has definitive conformational features associated with it. Second, the two minimal bioactive domains of tritrypticin have entirely different structures while having equivalent activities. Third, tritrypticin has a beta-turn conformation in solution, but the functionally relevant conformation of this gene-encoded peptide antibiotic may be an extended polyproline type II.  相似文献   

15.
Zeins are maize storages proteins that accumulate inside large vesicles called protein bodies. gamma-Zein lines the inner face of the protein body membrane, and its N-terminal proline-rich repetitive domain with the sequence (VHLPPP)(8) appears to be necessary for the accumulation of the protein within the organelle. Synthetic (VHLPPP)(8) adopts an amphipathic polyproline II conformation. In a preliminary recent work we used atomic force microscopy to study the surface organization of the octamer and transmission electron microscopy to visualize aggregates of the peptide from aqueous solution. We previously envisioned two self-assembly models (i.e., the geometric and the micellar) that take into account the observed features. In the present work we studied in detail the self-assembly of the peptide in solution and found that the peptide is able to form cylindrical micelles. Fibrils formed on graphite are generated by assembly of solution micelles. Based on the results of these studies, we focused exclusively on the micellar model. To our knowledge we have characterized for the first time supramolecular aggregates of polyproline structures other than collagen. The spontaneous arrangement of (VHLPPP)(8) suggests a role for the N-terminal domain of gamma-zein in the process of the whole protein deposition in protein bodies.  相似文献   

16.
Shi Z  Chen K  Liu Z  Sosnick TR  Kallenbach NR 《Proteins》2006,63(2):312-321
A great deal of attention has been paid lately to the structures in unfolded proteins due to the recent discovery of many biologically functional but natively unfolded proteins and the far-reaching implications of order in unfolded states for protein folding. Recently, studies on oligo-Ala, oligo-Lys, oligo-Asp, and oligo-Glu, as well as oligo-Pro, have indicated that the left-handed polyproline II (PII) is the major local structure in these short peptides. Here, we show by NMR and CD studies that ubiquitin fragments, model unfolded peptides composed of nonrepeating amino acids, and four alanine-rich peptides containing QQQ, SSS, FFF, and VVV sequences are all present in aqueous solution predominantly in the extended PII or beta conformation. The results from this and related studies indicate that PII might be a major backbone conformation in unfolded proteins. The presence of defined local backbone structure in unfolded proteins is inconsistent with predictions from random coil models.  相似文献   

17.
Mirkin NG  Krimm S 《Biopolymers》2012,97(10):789-794
Although subsequent studies have provided extensive support for the 1968 Tiffany and Krimm proposal (Biopolymers 6, 1379) that the polyproline II (PPII) conformation is a significant component of the structure of unordered polypeptide chains, two issues are still not fully resolved: the PPII persistence length in a chain and the source of its relative stability with respect to the β-conformation. We examine the latter question by studying the B97-D/6-31++G(**) energy, in the absence and presence of a reaction field, of the alanine dipeptide hydrated by various amounts of explicit waters and resolving this into its three components: the energies of the individual solvated peptides and water structures plus the interaction energy involving them. We find that the relative stability of the PPII conformation is determined mainly by the difference in the interaction energies of the water structures in the near-peptide layers.  相似文献   

18.
The polyproline type II (PPII) helix is a prevalent conformation in both folded and unfolded proteins, and is known to play important roles in a wide variety of biological processes. Polyproline itself can also form a type I (PPI) helix, which has a disparate conformation. Here, we use derivatives of polyproline, (Pro)10, (Hyp)10, (Flp)10, and (flp)10, where Hyp is (2S,4R)-4-hydroxyproline, Flp is (2S,4R)-4-fluoroproline, and flp is (2S,4S)-4-fluoroproline, to probe for a stereoelectronic effect on the conformation of polyproline. Circular dichroism spectral analyses show that 4R electron-with-drawing substituents stabilize a PPII helix relative to a PPI helix, even in a solvent that favors the PPI conformation, such as n-propanol. The stereochemistry at C4 ordains the relative stability of PPI and PPII helices, as (flp)10 forms a mixture of PPI and PPII helices in water and a PPI helix in n-propanol. The conformational preferences of (Pro)10 are intermediate between those of (Hyp)10/(Flp)10 and (flp)10. Interestingly, PPI helices of (flp)10 exhibit cold denaturation in n-propanol with a value of T(s) near 70 degrees C. Together, these data show that stereoelectronic effects can have a substantial impact on polyproline conformation and provide a rational means to stabilize a PPI or PPII helix.  相似文献   

19.
20.
《Journal of morphology》2017,278(1):119-130
During tail regeneration in lizards, the stratified regenerating epidermis progressively gives rise to neogenic scales that form a new epidermal generation. Initially, a soft, un‐scaled, pliable, and extensible epidermis is formed that is progressively replaced by a resistant but non‐extensible scaled epidermis. This suggests that the initial corneous proteins are later replaced with harder corneous proteins. Using PCR and immunocytochemistry, the present study shows an upregulation in the synthesis of low‐cysteine type I and II alpha‐keratins and of corneous beta‐proteins with a medium cysteine content and a low content in glycine (formerly termed beta‐keratins) produced at the beginning of epidermal regeneration. Quantitative PCR indicates upregulation in the production of alpha‐keratin mRNAs, particularly of type I, between normal and the thicker regenerating epidermis. PCR‐data also indicate a higher upregulation for cysteine‐rich corneous beta‐proteins and a high but less intense upregulation of low glycine corneous protein mRNAs at the beginning of scale regeneration. Immunolabeling confirms the localization of these proteins, and in particular of beta‐proteins with a medium content in cysteine initially formed in the wound epidermis and later in the differentiating corneous layers of regenerating scales. It is concluded that the wound epidermis initially contains alpha‐keratins and corneous beta‐proteins with a lower cysteine content than more specialized beta‐proteins later formed in the mature scales. These initial corneous proteins are likely related to the pliability of the wound epidermis while more specialized alpha‐keratins and beta‐proteins richer in glycine and cysteine are synthesized later in the mature and inflexible scales. J. Morphol. 278:119–130, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号