首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of mitogen-activated protein (MAP) kinase cascade signaling by yeast mating pheromones involves recruitment of the Ste5 scaffold protein to the plasma membrane by the receptor-activated Gbetagamma dimer. Here, we identify a putative amphipathic alpha-helical domain in Ste5 that binds directly to phospholipid membranes and is required for membrane recruitment by Gbetagamma. Thus, Ste5 signaling requires synergistic Ste5-Gbetagamma and Ste5-membrane interactions, with neither alone being sufficient. Remarkably, the Ste5 membrane binding domain is a dual-function motif that also mediates nuclear import. Separation-of-function mutations show that signaling requires the membrane-targeting activity of this domain, not its nuclear-targeting activity, and heterologous lipid binding domains can substitute for its function. This domain also contains imperfections that reduce membrane affinity, and their elimination results in constitutive signaling, explaining some previous hyperactive Ste5 mutants. Therefore, weak membrane affinity is advantageous, ensuring a normal level of signaling quiescence in the absence of stimulus and imposing a requirement for Gbetagamma binding.  相似文献   

2.
In Saccharomyces cerevisiae, signal transduction through pathways governing mating, osmoregulation, and nitrogen starvation depends upon a direct interaction between the sterile alpha motif (SAM) domains of the Ste11 mitogen-activated protein kinase kinase kinase (MAPKKK) and its regulator Ste50. Previously, we solved the NMR structure of the SAM domain from Ste11 and identified two mutants that diminished binding to the Ste50 SAM domain. Building upon the Ste11 study, we present the NMR structure of the monomeric Ste50 SAM domain and a series of mutants bearing substitutions at surface-exposed hydrophobic amino acid residues. The mid-loop (ML) region of Ste11-SAM, defined by helices H3 and H4 and the end-helix (EH) region of Ste50-SAM, defined by helix H5, were sensitive to substitution, indicating that these two surfaces contribute to the high-affinity interaction. The combination of two mutants, Ste11-SAM-L72R and Ste50-SAM-L69R, formed a high-affinity heterodimer unencumbered by competing homotypic interactions that had prevented earlier NMR studies of the wild-type complex. Yeast bearing mutations that prevented the heterotypic Ste11-Ste50 association in vitro presented signaling defects in the mating and high-osmolarity growth pathways.  相似文献   

3.
4.
STE20 encodes a protein kinase related to mammalian p65Pak which functions in several signal transduction pathways in yeast, including those involved in pseudohyphal and invasive growth, as well as mating. In addition, Ste20 plays an essential role in cells lacking Cla4, a kinase with significant homology to Ste20. It is not clear how the activity of Ste20 is regulated in response to these different signals in vivo, but it has been demonstrated recently that binding of the small GTP binding protein Cdc42 is able to activate Ste20 in vitro. Here we show that Ste20 functionally interacts with Cdc42 in a GTP-dependent manner in vivo: Ste20 mutants that can no longer bind Cdc42 were unable to restore growth of ste20 cla4 mutant cells. They were also defective for pseudohyphal growth and agar invasion, and displayed reduced mating efficiency when mated with themselves. Surprisingly, however, the kinase activity of such Ste20 mutants was normal when assayed in vitro. Furthermore, these alleles were able to fully activate the MAP kinase pathway triggered by mating pheromones in vivo, suggesting that binding of Cdc42 and Ste20 was not required to activate Ste20. Wild-type Ste20 protein was visualized as a crescent at emerging buds during vegetative growth and at shmoo tips in cells arrested with alpha-factor. In contrast, a Ste20 mutant protein unable to bind Cdc42 was found diffusely throughout the cytoplasm, suggesting that Cdc42 is required to localize Ste20 properly in vivo.  相似文献   

5.
Distinct MAP kinase pathways in yeast share several signaling components , including the PAK Ste20 and the MAPKKK Ste11, yet signaling is specific. Mating pheromones trigger an initial step in which Ste20 activates Ste11 , and this requires plasma membrane recruitment of the MAP kinase cascade scaffold protein, Ste5 . Here, we demonstrate an additional role for Ste5 membrane localization. Once Ste11 is activated, signaling through the mating pathway remains minimal but is substantially amplified when Ste5 is recruited to the membrane either by the Gbetagamma dimer or by direct membrane targeting, even to internal membranes. Ste11 signaling is also amplified by Ste5 oligomerization and by a hyperactivating mutation in the Ste7 binding region of Ste5. We suggest a model in which membrane recruitment of Ste5 concentrates its binding partners and thereby amplifies signaling through the kinase cascade. We find similar behavior in the osmotically responsive HOG pathway. Remarkably, while both pheromone and hyperosmotic stimuli amplify signaling from constitutively active Ste11, the resulting signaling output remains pathway specific. These findings suggest a common mode of regulation in which pathway stimuli both initiate and amplify MAP kinase cascade signaling. The regulation of rate-limiting steps that lie after a branchpoint from shared components helps ensure signaling specificity.  相似文献   

6.
Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gbetagamma, either alone or with Galpha-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor-Galphabetagamma module and GTP hydrolysis by Galpha. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor-Galphabetagamma communication but not modulation of MAP kinase signaling. To explore regulation of Gbetagamma by Galpha, we mutated Gbeta residues in two structurally distinct Galpha-Gbeta binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gbeta-Galpha fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor-Galphabetagamma coupling. These findings raise the possibility that the Galphabetagamma heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface.  相似文献   

7.
The Ste5 protein forms a scaffold that associates and regulates the components of the mitogen-activated protein (MAP) kinase cascade that controls mating-pheromone-mediated signaling in the yeast Saccharomyces cerevisiae. Although it is known that the MEK kinase of the pathway, Ste11, associates with Ste5, details of this interaction have not been established. We identified a Ras-binding-domain-like (RBL) region in the Ste11 protein that is required specifically for the kinase to function in the mating pathway. This module is structurally related to domains in other proteins that mediate Ras-MAP kinase kinase kinase associations; however, this RBL module does not interact with Ras, but instead binds the PH domain of the Ste5 scaffold. Structural and functional studies suggest that the key role of this PH domain is to mediate the Ste5–Ste11 interaction. Overall these two evolutionarily conserved modules interact with each other through a unique interface, and thus in the pheromone pathway the structural context of the RBL domain contribution to kinase activation has been shifted through a change of its interaction partner from Ras to a PH domain.  相似文献   

8.
The mitogen-activated protein kinase (MAPK) Byr2 and its activator Ste4 are involved in the mating pheromone response pathway of Schizosaccharomyces pombe and interact via their SAM domains. SAM domains can self-associate to form higher-order structures, including dimers, polymers and closed oligomers. Ste4-SAM is adjacent to a trimeric leucine zipper domain and we have shown previously that the two domains together (Ste4-LZ-SAM) bind to a monomeric Byr2-SAM with high affinity (Kd approximately 20 nM), forming a 3:1 complex. Here, we map the surfaces of Byr2-SAM and Ste4-SAM that is involved the interaction. A set of 38 mutants of Byr2-SAM and 33 mutants of Ste4-SAM were prepared, covering most of the protein surfaces. These mutants were purified and screened for binding, yielding a map of residues that are required for binding and a complementary map of residues that are not required. We find that the interface maps to regions of the SAM domains that are known to be important for the formation of SAM polymers. These results indicate that SAM domains can create a variety of oligomeric architectures utilizing common binding surfaces.  相似文献   

9.
Saccharomyces cerevisiae Ste5 is a scaffold protein that recruits many pheromone signaling molecules to sequester the pheromone pathway from other homologous mitogen-activated protein kinase pathways. G1 cell cycle arrest and mating are two different physiological consequences of pheromone signal transduction and Ste5 is required for both processes. However, the roles of Ste5 in G1 arrest and mating are not fully understood. To understand the roles of Ste5 better, we isolated 150 G1 cell cycle arrest defective STE5 mutants by chemical mutagenesis of the gene. Here, we found that two G1 cell cycle arrest defective STE5 mutants (ste5M(D248V) and ste5(delta-776)) retained mating capacity. When overproduced in a wild-type strain, several ste5 mutants also showed different dominant phenotypes for G1 arrest and mating. Isolation and characterization of the mutants suggested separable roles of Ste5 in G1 arrest and mating of S. cerevisiae. In addition, the roles of Asp-248 and Tyr-421, which are important for pheromone signal transduction were further characterized by site-directed mutagenesis studies.  相似文献   

10.
The Saccharomyces cerevisiae kinase Ste20 is a member of the p21-activated kinase (PAK) family with several functions, including pheromone-responsive signal transduction. While PAKs are usually activated by small G proteins and Ste20 binds Cdc42, the role of Cdc42-Ste20 binding has been controversial, largely because Ste20 lacking its entire Cdc42-binding (CRIB) domain retains kinase activity and pheromone response. Here we show that, unlike CRIB deletion, point mutations in the Ste20 CRIB domain that disrupt Cdc42 binding also disrupt pheromone signaling. We also found that Ste20 kinase activity is stimulated by GTP-bound Cdc42 in vivo and this effect is blocked by the CRIB point mutations. Moreover, the Ste20 CRIB and kinase domains bind each other, and mutations that disrupt this interaction cause hyperactive kinase activity and bypass the requirement for Cdc42 binding. These observations demonstrate that the Ste20 CRIB domain is autoinhibitory and that this negative effect is antagonized by Cdc42 to promote Ste20 kinase activity and signaling. Parallel results were observed for filamentation pathway signaling, suggesting that the requirement for Cdc42-Ste20 interaction is not qualitatively different between the mating and filamentation pathways. While necessary for pheromone signaling, the role of the Cdc42-Ste20 interaction does not require regulation by pheromone or the pheromone-activated G beta gamma complex, because the CRIB point mutations also disrupt signaling by activated forms of the kinase cascade scaffold protein Ste5. In total, our observations indicate that Cdc42 converts Ste20 to an active form, while pathway stimuli regulate the ability of this active Ste20 to trigger signaling through a particular pathway.  相似文献   

11.
Serine/threonine protein kinases of the Ste20p/PAK family are highly conserved from yeast to man. These protein kinases have been implicated in the signaling from heterotrimeric G proteins to mitogen-activated protein (MAP) kinase cascades and to cytoskeletal components such as myosin-I. In the yeast Saccharomyces cerevisiae, Ste20p is involved in transmitting the mating-pheromone signal from the betagamma-subunits of a heterotrimeric G protein to a downstream MAP kinase cascade. We have previously shown that binding of the G-protein beta-subunit (Gbeta) to a short binding site in the non-catalytic carboxy-terminal region of Ste20p is essential fortransmitting the pheromone signal. In this study, we searched protein sequence databases for sequences that are similar to the Gbeta binding site in Ste20p. We identified a sequence motif with the consensus sequence S S L phi P L I/V x phi phi beta (x: any residue; phi: A, I, L, S, or T; beta: basic residues) that is solely present in members of Ste20p/PAK family protein kinases. We propose that this sequence motif, which we have designated GBB (Gbeta binding) motif, is specifically responsible for binding of Gbeta to Ste20p/PAK protein kinases in response to activation of heterotrimeric G protein coupled receptors. Thus, the GBB motif is a novel type of signaling domain that serves to link protein kinases of the Ste20p/PAK family to G protein coupled receptors.  相似文献   

12.
In the yeast Saccharomyces cerevisiae, the hetero-trimeric G protein transduces the mating pheromone signal from a cell-surface receptor. Free Gβγ then activates a mitogen-activated protein (MAP) kinase cascade. STE50 has been shown to be involved in this pheromone signal-transduction pathway. In this study, we present a functional characterization of Ste50p, a protein that is required to sustain the pheromone-induced signal which leads cells to hormone-induced differentiation. Inactivation of STE50 leads to the attenuation of mating pheromone-induced signal transduction, and overexpression of STE50 intensifies the pheromone-induced signalling. By genetic analysis we have positioned the action of Ste50p downstream of the α-pheromone receptor (STE2), at the level of the heterotrimeric G protein, and upstream of STE5 and the kinase cascade of STE11 and STE7. In a two-hybrid assay Ste50p interacts weakly with the G protein and strongly with the MAPKKK Ste11p. The latter interaction is absent in the constitutive mutant Ste11pP279S. These data show that a new component, Ste50p, determines the extent and the duration of signal transduction by acting between the G protein and the MAP kinase complex in S. cerevisiae.  相似文献   

13.
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were used as a model system to study ligand-receptor interaction. Cys-scanning mutagenesis on each residue of EL1, the first extracellular loop of Ste2p, was used to generate a library of 36 mutants with a single Cys residue substitution. Mutation of most residues of EL1 had only negligible effects on ligand affinity and biological activity of the mutant receptors. However, five mutants were identified that were either partially (L102C and T114C) or severely (N105C, S108C, and Y111C) compromised in signaling but retained binding affinities similar to those of wild-type receptor. Three-dimensional modeling, secondary structure predictions, and subsequent circular dichroism studies on a synthetic peptide with amino acid sequence corresponding to EL1 suggested the presence of a helix corresponding to EL1 residues 106 to 114 followed by two short beta-strands (residues 126 to 135). The distinctive periodicity of the five residues with a signal-deficient phenotype combined with biophysical studies suggested a functional involvement in receptor activation of a face on a 3(10) helix in this region of EL1. These studies indicate that EL1 plays an important role in the conformational switch that activates the Ste2p receptor to initiate the mating pheromone signal transduction pathway.  相似文献   

14.
Ste5 is essential for the yeast mating pheromone response pathway and is thought to function as a scaffold that organizes the components of the mitogen-activated protein kinase (MAPK) cascade. A new method was developed to isolate missense mutations in Ste5 that differentially affect the ability of Ste5 to interact with either of two MAPK cascade constituents, the MEKK (Ste11) and the MEK (Ste7). Mutations that affect association with Ste7 or with Ste11 delineate discrete regions of Ste5 that are critical for each interaction. Co-immunoprecipitation analysis, examining the binding in vitro of Ste5 to Ste11, Ste7, Ste4 (G protein β subunit), and Fus3 (MAPK), confirmed that each mutation specifically affects the interaction of Ste5 with only one protein. When expressed in a ste5Δ cell, mutant Ste5 proteins that are defective in their ability to interact with either Ste11 or Ste7 result in a markedly reduced mating proficiency. One mutation that clearly weakened (but did not eliminate) interaction of Ste5 with Ste7 permitted mating at wild-type efficiency, indicating that an efficacious signal is generated even when Ste5 associates with only a small fraction of (or only transiently with) Ste7. Ste5 mutants defective in association with Ste11 or Ste7 showed strong interallelic complementation when co-expressed, suggesting that the functional form of Ste5 in vivo is an oligomer.  相似文献   

15.
Endocytic internalization of G protein-coupled receptors (GPCRs) plays a critical role in down-regulation of GPCR signaling. The yeast mating pheromone receptor Ste2p has been used as a model to investigate mechanisms of signal transduction, modification, and endocytic internalization of GPCRs. We previously used a fluorescently labeled mating pheromone derivative to reveal unappreciated molecular and spatiotemporal features of GPCR endocytosis in budding yeast. Here, we identify recruitment of Ste2p to preexisting clathrin-coated pits (CCPs) as a key step regulated by receptor phosphorylation and subsequent ubiquitination upon ligand binding. The yeast casein kinase I homologue Yck2p directly phosphorylates six serine residues located in the C-terminal tail of Ste2p, and mutation of these serine residues to alanine significantly decreased recruitment of Ste2p to CCPs. We also found that the clathrin adaptors Ent1p, Ent2p, and Ede1p work cooperatively to recruit ubiquitinated Ste2p to CCPs. In addition, ubiquitination has a role in ligand-independent constitutive recruitment of Ste2p to CCPs, although this process is much slower than ligand-induced recruitment. These results suggest that ubiquitination of Ste2p is indispensable for recruiting Ste2p to CCPs in both ligand-dependent and ligand-independent endocytosis.  相似文献   

16.
In Saccharomyces cerevisiae, the MAPKKK Ste11p is involved in three mitogen-activated protein kinase (MAPK) pathways required for mating, filamentous growth and the SHO1-dependent response to hyperosmolarity. All three pathways are also dependent on Ste50p. Ste50p and Ste11p interact constitutively via their N-terminal regions, which include putative SAM domains. Here we show that the interaction of Ste50p and Ste11p is differentially required for modulation of Ste11p function during mating, filamentous growth and the SHO1-dependent response to hyperosmolarity. Two derivatives of Ste50p with mutations in the SAM domain were isolated and characterised. The mutant Ste50 proteins showed reduced binding to Ste11p and a tendency to form homodimers in two-hybrid and in vitro binding assays. Interestingly, these two Ste50p-SAM mutants were associated with increased activation of the mating and filamentous-growth pathways, but a reduction in the SHO1-dependent growth response to hyperosmolarity, relative to the wild-type Ste50p. Moreover, when exposed to hyperosmolarity, these Ste50p-SAM mutants activate genes in the mating (FUS1) and filamentous-growth (FLO11) pathways to higher levels than does the wild type. Thus the Ste50p-Ste11p interaction may differentially modulate the flow of information through the various MAPK-mediated pathways.  相似文献   

17.
Scaffold proteins play pivotal roles during signal transduction. In Saccharomyces cerevisiae, the Ste5p scaffold protein is required for activation of the mating MAPK cascade in response to mating pheromone and assembles a G protein-MAPK cascade complex at the plasma membrane. To serve this function, Ste5p undergoes a regulated localization event involving nuclear shuttling and recruitment to the cell cortex. Here, we show that Ste5p is also subject to two types of phosphorylation and increases in abundance as a result of MAPK activation. During vegetative growth, Ste5p is basally phosphorylated through a process regulated by the CDK Cdc28p. During mating pheromone signaling, Ste5p undergoes increased phosphorylation by the mating MAPK cascade. Multiple kinases of the mating MAPK cascade contribute to pheromone-induced phosphorylation of Ste5p, with the mating MAPKs contributing the most. Pheromone induction or overexpression of the Ste4p Gbeta subunit increases the abundance of Ste5p at a post-translational step, as long as the mating MAPKs are present. Increasing the level of MAPK activation increases the amount of Ste5p at the cell cortex. Analysis of Ste5p localization mutants reveals a strict requirement for Ste5p recruitment to the plasma membrane for the pheromone-induced phosphorylation. These results suggest that the pool of Ste5p that is recruited to the plasma membrane selectively undergoes feedback phosphorylation by the associated MAPKs, leading to an increased pool of Ste5p at the site of polarized growth. These findings provide evidence of a spatially regulated mechanism for post-activation control of a signaling scaffold that potentiates pathway activation.  相似文献   

18.
In Saccharomyces cerevisiae, the highly conserved Rho-type GTPase Cdc42 is essential for cell division and controls cellular development during mating and invasive growth. The role of Cdc42 in mating has been controversial, but a number of previous studies suggest that the GTPase controls the mitogen-activated protein (MAP) kinase cascade by activating the p21-activated protein kinase (PAK) Ste20. To further explore the role of Cdc42 in pheromone-stimulated signaling, we isolated novel alleles of CDC42 that confer resistance to pheromone. We find that in CDC42(V36A) and CDC42(V36A, I182T) mutant strains, the inability to undergo pheromone-induced cell cycle arrest correlates with reduced phosphorylation of the mating MAP kinases Fus3 and Kss1 and with a decrease in mating efficiency. Furthermore, Cdc42(V36A) and Cdc42(V36A, I182T) proteins show reduced interaction with the PAK Cla4 but not with Ste20. We also show that deletion of CLA4 in a CDC42(V36A, I182T) mutant strain suppresses pheromone resistance and that overexpression of CLA4 interferes with pheromone-induced cell cycle arrest and MAP kinase phosphorylation in CDC42 wild-type strains. Our data indicate that Cla4 has the potential to act as a negative regulator of the mating pathway and that this function of the PAK might be under control of Cdc42. In conclusion, our study suggests that control of pheromone signaling by Cdc42 not only depends on Ste20 but also involves interaction of the GTPase with Cla4.  相似文献   

19.
Mutagenesis was used to probe the interface between the small GTPase Cdc42p and the CRIB domain motif of Ste20p. Members of a cluster of hydrophobic residues of Cdc42p were changed to alanine and/or arginine. The interaction of the wild-type and mutant proteins was measured using the two-hybrid assay; many, but not all, changes reduced interaction between Cdc42p and the target CRIB domain. Mutations in conserved residues in the CRIB domain were also tested for their importance in the association with Cdc42p. Two conserved CRIB domain histidines were changed to aspartic acid. These mutants reduced mating, as well as responsiveness to pheromone-induced gene expression and cell cycle arrest, but did not reduce in vitro the kinase activity of Ste20p. GFP-tagged mutant proteins were unable to localize to sites of polarized growth. In addition, these point mutants were synthetically lethal with disruption of CLA4 and blocked the Ste20p-Cdc42p two-hybrid interaction. Compensatory mutations in Cdc42p that reestablished the two-hybrid association with the mutant Ste20p CRIB domain baits were identified. These mutations improved the pheromone responsiveness of cells containing the CRIB mutations, but did not rescue the lethality associated with the CRIB mutant CLA4 deletion interaction. These results suggest that the Ste20p-Cdc42p interaction plays a direct role in Ste20p kinase function and that this interaction is required for efficient activity of the pheromone response pathway.  相似文献   

20.
BACKGROUND: Signal transduction pathways with shared components must be insulated from each other to avoid the inappropriate activation of multiple pathways by a single stimulus. Scaffold proteins are thought to contribute to this specificity by binding select substrates. RESULTS: We have studied the ability of scaffold proteins to influence signaling by the yeast kinase Ste11, a MAPKKK molecule that participates in three distinct MAP kinase pathways: mating, filamentation, and HOG. We used protein fusions to force Ste11 to associate preferentially with a subset of its possible binding partners in vivo, including Ste5, Ste7, and Pbs2. Signaling became confined to a particular pathway when Ste11 was covalently attached to these scaffolds or substrates. This pathway bias was conferred upon both stimulus-activated and constitutively active forms of Ste11. We also used membrane-targeted derivatives of the mating pathway scaffold, Ste5, to show that stimulus-independent signaling initiated by this scaffold remained pathway specific. Finally, we demonstrate that loss of pathway insulation has a negative physiological consequence, as nonspecific activation of both the HOG and mating pathways interfered with proper execution of the mating pathway. CONCLUSIONS: The signaling properties of these kinase fusions support a model in which scaffold proteins dictate substrate choice and promote pathway specificity by presenting preferred substrates in high local concentration. Furthermore, insulation is inherent to scaffold-mediated signaling and does not require that signaling be initiated by pathway-specific stimuli or activator proteins. Our results give insight into the mechanisms and physiological importance of pathway insulation and provide a foundation for the design of customized signaling proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号