首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of pepsin with chlorogenic acid (CHA) was investigated using fluorescence, UV/vis spectroscopy and molecular modeling methods. Stern–Volmer analysis indicated that the fluorescence quenching of pepsin by CHA resulted from a static mechanism, and the binding constant was 1.1846 × 105 and 1.1587 × 105 L/mol at 288 and 310 K, respectively. The distance between donor (pepsin) and acceptor (CHA) was calculated to be 2.39 nm and the number of binding sites for CHA binding on pepsin was ~ 1. The results of synchronous fluorescence and three‐dimensional fluorescence showed that binding of CHA to pepsin could induce conformational changes in pepsin. Molecular docking experiments found that CHA bonded with pepsin in the area of the hydrophobic cavity with Van der Waals' forces or hydrogen bonding interaction, which were consistent with the results obtained from the thermodynamic parameter analysis. Furthermore, the binding of CHA can inhibit pepsin activity in vitro. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The interaction between fleroxacin (FLX) and pepsin was investigated by spectrofluorimetry. The effects of FLX on pepsin showed that the microenvironment of tryptophan residues and molecular conformation of pepsin were changed based on fluorescence quenching and synchronous fluorescence spectroscopy in combination with three‐dimensional fluorescence spectroscopy. Static quenching was suggested and it was proved that the fluorescence quenching of pepsin by FLX was related to the formation of a new complex and a non‐radiation energy transfer. The quenching constants KSV, binding constants K and binding sites n were calculated at different temperatures. The molecular interaction distance (r = 6.71) and energy transfer efficiency (E = 0.216) between pepsin and FLX were obtained according to the Forster mechanism of non‐radiation energy transfer. Hydrophobic and electrostatic interaction played a major role in FLX–pepsin association. In addition, the hydrophobic interaction and binding free energy were further tested by molecular modeling study. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

In this paper, we have studied the in vitro binding of neotame (NTM), an artificial sweetener, with native calf thymus DNA using different methods including spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD), and viscosimetric techniques. From the spectrophotometric studies, the binding constant (Kb) of NTM-DNA was calculated to be 2?×?103 M?1. The quenching of the intrinsic fluorescence of NTM in the presence of DNA at different temperatures was also used to calculate binding constants (Kb) as well as corresponding number of binding sites (n). Moreover, the obtained results indicated that the quenching mechanism involves static quenching. By comparing the competitive fluorimetric studies with Hoechst 33258, as a known groove probe, and methylene blue, as a known intercalation probe, and iodide quenching experiments it was revealed that NTM strongly binds in the grooves of the DNA helix, which was further confirmed by CD and viscosimetric studies. In addition, a molecular docking method was employed to further investigate the binding interactions between NTM and DNA, and confirm the obtained results.  相似文献   

4.
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra‐red spectroscopy (FT‐IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern–Volmer quenching constants and binding constants for the MS–HSA system at 293, 298 and 303 K were obtained from the Stern–Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS–HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three‐dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS–HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.  相似文献   

5.
The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 104 M?1implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases.  相似文献   

6.
Diamine‐sarcophagine (DiAmsar) binding to human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under simulative physiological conditions. Fluorescence spectra in combination with Fourier transform infrared (FT‐IR), UV‐visible (UV–vis) spectroscopy, cyclic voltammetry (CV), and molecular docking method were used in the present work. Experimental results revealed that DiAmsar had an ability to quench the HSA and BSA intrinsic fluorescence through a static quenching mechanism. The Stern–Volmer quenching rate constant (Ksv) was calculated as 0.372 × 103 M‐1 and 0.640 × 103 M‐1 for HSA and BSA, respectively. Moreover, binding constants (Ka), number of binding sites (n) at different temperatures, binding distance (r), and thermodynamic parameters (?H°, ?S°, and ?G°) between DiAmsar and HSA (or BSA) were calculated. DiAmsar exhibited good binding propensity to HSA and BSA with relatively high binding constant values. The positive ?H° and ?S° values indicated that the hydrophobic interaction is main force in the binding of the DiAmsar to HSA (or BSA). Furthermore, molecular docking results revealed the possible binding site and the microenvironment around the bond. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The interaction of acteoside with pepsin has been investigated using fluorescence spectra, UV/vis absorption spectra, three‐dimensional (3D) fluorescence spectra and synchronous fluorescence spectra, along with a molecular docking method. The fluorescence experiments indicate that acteoside can quench the intrinsic fluorescence of pepsin through combined quenching at a low concentration of acteoside, and static quenching at high concentrations. Thermodynamic analysis suggests that hydrogen bonds and van der Waal's forces are the main forces between pepsin and acteoside. According to the theory of Förster's non‐radiation energy transfer, the binding distance between pepsin and acteoside was calculated to be 2.018 nm, which implies that energy transfer occurs between acteoside and pepsin. In addition, experimental results from UV/vis absorption spectra, 3D fluorescence spectra and synchronous fluorescence spectra imply that pepsin undergoes a conformation change when it interacts with acteoside. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the interaction of genistein (GEN) and its four derivatives (GEN1–4) with bovine serum albumin (BSA) were investigated by ultraviolet–visible absorption spectra, fluorescence, synchronous fluorescence, three‐dimensional fluorescence spectroscopy, circular dichroism and molecular docking techniques. The experimental results showed that the intrinsic fluorescence of BSA was quenched by genisteins and was due to the formation of a genisteins–BSA complex. The quenching constant, binding constants, binding sites, intermolecular distances and thermodynamic properties were calculated at 298 K, 306 K and 310 K. Site marker competitive experiments indicated that the binding site of genisteins to BSA was mainly located in subdomain IIA. The conformational investigation showed that the presence of 0020 genisteins led to changes in the secondary structure of BSA and induced the slight unfolding of protein polypeptides, which confirmed some micro‐environmental and conformational changes of BSA molecules. Furthermore, the binding affinity decreased in the order GEN1 > GEN > GEN4 > GEN3 > GEN2, which revealed that different type and position of substituents of genistein significantly influenced the affinity of compounds to BSA. The number of hydroxyl groups on the ring A was the most important factor because increasing the hydroxyl groups on ring A clearly enhanced the binding affinity. However, trifluoromethylation did not much affect the affinity, alkylation, esterification and difluoromethylation slightly enhanced the binding affinity. The results obtained herein will provide valuable information about the pharmacokinetics at a molecular level and be a useful guideline for the further design of much more suitable genistein derivatives.  相似文献   

9.
本研究旨在研究染料木黄酮(Genistein,Gen)对大鼠体内N-羟乙酰神经氨酸(N-glycolylneuraminic acid,Neu5Gc)生物合成的影响。选取80只4周龄SD雄性大鼠,随机平均分为对照组和Gen组,分别灌胃5%的乙醇溶液和300 mg/(kg·d)的Gen溶液。利用荧光高效液相色谱(HPLC-FLD)检测大鼠后腿肌肉、肾脏、肝脏组织中Neu5Gc的含量,并采用Gen与唾液酸转移酶(Sialyltransferase,ST)分子对接,初步探讨了其抑制Neu5Gc合成的机理。结果表明:灌胃15 d时,后腿肌肉和肝脏组织中的Neu5Gc的含量分别降低了13.77%和15.45%,而肾脏组织中Neu5Gc的含量变化差异不显著;30 d时,在肌肉组织中未检出Neu5Gc,在肝脏组织中的Neu5Gc的含量降低了13.35%,肾脏组织中Neu5Gc的含量没有显著的变化;45 d时,在后腿肌肉、肾脏组织和肝脏组织中的Neu5Gc含量分别降低了32.65%、16.80%和32.78%;60d时,在后腿肌肉、肾脏组织和肝脏组织中Neu5Gc含量降低了12.72%、12.30%和11.42%。Gen与ST活性位点残基His319、Ser151、Gly293、Thr328形成氢键,且与残基His302、His301、Trp300、Ser271、Phe292、Thr328、Ser325、Ile274形成疏水作用。因此分子间弱相互作用是导致Gen抑制ST活性的主要原因。该研究结果为后续开展宰前降低红肉中Neu5Gc的方法提供了基础实验方法支撑。  相似文献   

10.
In our present study, binding between an important anti renal cancer drug temsirolimus and human transferrin (hTF) was investigated employing spectroscopic and molecular docking approach. In the presence of temsirolimus, hyper chromaticity is observed in hTF in UV spectroscopy suggestive of complex formation between hTF and temsirolimus. Fluorescence spectroscopy revealed the occurrence of quenching in hTF in the presence of temsirolimus implying complex formation taking place between hTF and temsirolimus. Further, the mode of interaction between hTF and temsirolimus was revealed to be static by fluorescence quenching analysis at 3 different temperatures. Binding constant values obtained employing fluorescence spectroscopy depicts strong interaction between hTF and temsirolimus; temsirolimus binds to hTF at 298 K with a binding constant of .32 × 104 M?1 implying the strength of this interaction. The negative Gibbs free energy obtained through quenching experiments is evident of the fact that the binding is spontaneous. CD spectra of hTF also showed a downward shift in the presence of temsirolimus as compared with free hTF implying complex formation between hTF and temsirolimus. Molecular docking was performed with a view to find out which residues are key players in this interaction. The importance of our study stems from the fact it will provide an insight into binding pattern of commonly administered renal cancer drug with an important protein that plays a pivotal role in many physiological processes.  相似文献   

11.
The effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells in vitro was investigated to determine a cellular mechanism by which the isoflavones stimulate bone formation. Cells were cultured for 48 h in -minimal essential medium containing either vehicle, genistein (10–7–10–5 M) or daidzein (10–7–10–5 M). The 5,500 g supernatant of cell homogenate was used for assay of protein synthesis with [3H]leucine incorporation in vitro. The culture with genistein or daidzein caused a significant elevation of protein synthesis in the cell homogenate. The effect of genistein (10–5 M) or daidzein (10–5 M) in elevating protein synthesis was significantly prevented, when cells were cultured for 48 h in a medium containing either actinomycin D (10–7 M) or cycloheximide (10–6 M) in the absence or presence of isoflavones. Moreover, when genistein (10–7–10–5 M) or daidzein (10–6 and 10–5 M) was added to the reaction mixture containing the cell homogenate obtained from osteoblastic cells cultured without isoflavone, protein synthesis was significantly raised. This increase was markedly blocked by the addition of cycloheximide (10–7 M). In addition, [3H]leucyl-tRNA synthetase activity in the cytosol of osteoblastic cells was significantly increased by the addition of genistein (10–6 and 10–5 M) or daidzein (10–5 M) into the enzyme reaction mixture. The present study demonstrates that genistein or daidzein can stimulate protein synthesis in osteoblastic MC3T3-E1 cells. The isoflavones may have a stimulatory effect on osteoblastic bone formation due to increasing protein synthesis.  相似文献   

12.
The interaction of triazole substituted 4‐methyl‐7‐hydroxycoumarin derivatives (CUM1‐4) with serum albumin (bovine serum albumin [BSA] and human serum albumin [HSA]) have been studied employing ultraviolet‐visible (UV‐Vis), fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods at physiological pH 7.4. The fluorescence quenching occurred with increasing concentration of CUMs, and the binding constant of CUM derivatives with BSA and HSA obtained from fluorescence quenching experiment was found to be ~ 104 L mol?1. CD study showed conformational changes in the secondary structure of serum albumin upon titration of CUMs. The observed experimental results were further validated by theoretical studies involving density functional theory (DFT) and molecular docking.  相似文献   

13.
The infections caused by multidrug resistant bacteria are widely treated with carabapenem antibiotics as a drug of choice, and human serum albumin (HSA) plays a vital role in binding with drugs and affecting its rate of delivery and efficacy. So, we have initiated this study to characterize the mechanism of doripenem binding and to locate its site of binding on HSA by using spectroscopic and docking approaches. The binding of doripenem leads to alteration of the environment surrounding Trp‐214 residue of HSA as observed by UV spectroscopic study. Fluorescence spectroscopic study revealed considerable interaction and complex formation of doripenem and HSA as indicated by Ksv and Kq values of the order of 104 M?1 and 1012 M?1 s?1, respectively. Furthermore, doripenem quenches the fluorescence of HSA spontaneously on a single binding site with binding constant of the order of 103 M?1, through an exothermic process. Van der Waals forces and hydrogen bonding are the major forces operating to stabilize HSA‐doripenem complex. Circular dichroism spectroscopic study showed changes in the structure of HSA upon doripenem binding. Drug displacement and molecular docking studies revealed that the binding site of doripenem on HSA is located on subdomain IB and III A. This study concludes that, due to significant interaction of doripenem on either subdomain IB or IIIA of HSA, the availability of doripenem on the target site may be compromised. Hence, there is a possibility of unavailability of threshold amount of drug to be reached to the target; consequently, resistance may develop in the bacterial population.  相似文献   

14.
Seven new quinoline-based bioorganic compounds were prepared by solvent-free synthesis and characterized using spectral techniques. The binding of these compounds with human serum albumin (HSA) was investigated by multi-spectroscopic methods. The quenching of Trp fluorescence upon addition of these compounds to HSA confirmed their significant binding. The quenching analysis at three different temperatures revealed that the complex formation is static and the reaction is entropy driven, spontaneous, and exothermic. Hydrogen bonds and van der Waals forces mainly contributed in the interactions as confirmed by the negative ΔH and ΔS values as well as molecular docking. The results from the circular dichroism (CD) spectroscopy indicated the minimal conformational changes of the protein upon binding with these quinoline compounds. The specific binding site and mode of interactions with HSA were also modeled using induced fit molecular docking procedure and their binding site was found to be in the interface of domains II and III, which is similar to the binding of the drug iodipamide with serum albumin.

Communicated by Ramaswamy H. Sarma  相似文献   


15.
We used UV-vis absorption spectroscopy, fluorescence spectrophotometry and molecular docking calculations to investigate intermolecular interaction between the cationic dye, Nile blue (NB), and synthetic polynucleotides, poly(A-T), poly(G-C) and calf thymus DNA (Ct-DNA) at physiological pH. Strong hypsochromic absorbance and fluorescence quenching were observed that showed strong binding of NB to these polynucleotides and DNA. The binding affinity values derived from maximum absorption of the spectra of NB bound to various polynucleotides and Ct-DNA concentrations suggests that NB exhibits greater binding affinity to poly(G-C) than to poly(A-T). The thermodynamic parameters suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of NB to DNA. The molecular docking results suggested that NB was an intercalator of the stacked base pairs of Ct-DNA.  相似文献   

16.
Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB–HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92–6.89?×?103?M?1 at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB–HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J?mol?1 K?1) and negative ΔH (?6.57?kJ?mol?1) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB–HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow’s site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca2+, Zn2+, Cu2+, Ba2+, Mg2+, and Mn2+ in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.  相似文献   

17.
18.
The interaction between human serum albumin (HSA) and aurantio‐obtusin was investigated by spectroscopic techniques combined with molecular docking. The Stern–Volmer quenching constants (KSV) decreased from 8.56 × 105 M?1 to 5.13 × 105 M?1 with a rise in temperatures from 289 to 310 K, indicating that aurantio‐obtusin produced a static quenching of the intrinsic fluorescence of HSA. Time‐resolved fluorescence studies proved again that the static quenching mechanism was involved in the interaction. The sign and magnitude of the enthalpy change as well as the entropy change suggested involvement of hydrogen bonding and hydrophobic interaction in aurantio‐obtusin–HSA complex formation. Aurantio‐obtusin binding to HSA produced significant alterations in secondary structures of HSA, as revealed from the time‐resolved fluorescence, Fourier transform infrared (FT‐IR) spectroscopy, three‐dimensional (3D) fluorescence and circular dichroism (CD) spectral results. Molecular docking study and site marker competitive experiment confirmed aurantio‐obtusin bound to HSA at site I (subdomain IIA).  相似文献   

19.
The effect of quercetin flavonoid (QUE), on the binding interaction of antihypertensive drug, amiloride (AMI) with bovine serum albumin (BSA) was investigated in this study. Spectroscopic methods such as steady‐state, synchronous, three‐dimensional fluorescence, and circular dichroism spectroscopy were employed to study the interaction. Fluorescence data were analyzed using the Stern–Volmer equation and a static quenching process was found to be involved in the formation of AMI–BSA and QUE–BSA complexes and were in good agreement with the thermodynamic study. The thermodynamic parameters illustrated that the process is spontaneous and enthalpy driven. Hydrophobicity is acting as the primary force in the binding interaction. Fluorescence spectral data were resolved using a multivariate curve resolution‐alternating least squares method (MCR–ALS). Site marker and molecular docking studies confirmed the binding site of AMI on BSA, i.e. site II. The binding distance between amino acid of BSA and AMI was calculated and found to be 2.18 nm which indicated that energy transfer has occurred from an amino acid of BSA to AMI. The binding affinity of AMI to BSA was found to be reduced in the presence of QUE, which may lead to the poor distribution of AMI at the desired site.  相似文献   

20.
New fluorescent iodobiphenyl ethers bearing para-alkyloxy functional groups of diverse alkyl tail lengths were synthesized. The synthesis process was simply accomplished via an alkali-assisted reaction of aliphatic alcohols with hydroxyl-substituted iodobiphenyls. The molecular structures of the prepared iodobiphenyl ethers were determined using Fourier transform infrared (FTIR) spectroscopy, elemental analysis, and nuclear magnetic resonance (NMR) spectroscopy. Both absorption and fluorescence spectra proved solvatochromic activity. The synthesized alkyloxy-substituted iodobiphenyl analogues were tested for antioxidant effectiveness using 2,2-diphenyl-1-picrylhydrazyl (DPPH) methodology. The antioxidant outcomes demonstrated that the longest hydrocarbon chain-containing substituted iodobiphenyl analogues had a high efficacy with over an IC50 = 21.26 ± 0.36 μg/ml. Alkyloxy-substituted iodobiphenyl analogues also underwent docking operations over the 5IKQ protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号