首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work reports the theoretical analysis of the electron–vibrational interaction (EVI) in 4f–5d optical transitions of Eu2+ ions in ABaPO4 (A = Li, Na, K and Rb) systems. The EVI parameters were estimated from the recently reported room temperature photoluminescence results, by employing the spectrum‐fitting method. Parameters such as the Huang–Rhys factor, effective phonon energy, Stokes shift and zero‐phonon line position were estimated and are reported here. The estimated EVI parameters were validated by modeling the emission band and establishing the agreement between the experimental and modeled emission bands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Sr2CeO4 phosphors with different crystalline sizes were synthesized by the sol–gel method or the solid‐state reaction. Their crystalline size, luminescence intensity of O2??Ce4+ charge transfer and energy gaps were obtained through the characterization by X‐ray diffraction, photoluminescence spectra, as well as UV–visible diffuse reflectance measurements. An inverse relationship between photoluminescence (PL) spectra and crystalline size was observed when the heating temperature was from 1000°C to 1300°C. In addition, band energy calculated for all samples showed that a reaction temperature of 1200°C for the solid‐state method and 1100°C for sol–gel method gave the largest values, which corresponded with the smallest crystalline size. Correlation between PL intensity and crystalline size showed an inverse relationship. Band structure, density of states and partial density of states of the crystal were calculated to analyze the mechanism using the cambrige sequential total energy package (CASTEP) module integrated with Materials Studio software.  相似文献   

3.
The preparation of Ce3+‐doped Sr6AlP5O20 and Ba6AlP5O20 by a combustion method is described. Formation of compounds was confirmed by X‐ray diffraction (XRD) analysis. The photoluminescence (PL) emission spectra were observed at 355 nm when excited at 307 nm for the various concentrations. The PL emission spectra of phosphors showed strong Ce3+ emission due to the 5 d → 4f transition of Ce3+ ions. The Ce3+ emission intensity in Sr6AlP5O20:Ce phosphor was higher than that in Ba6AlP5O20:Ce and it may be useful for scintillation applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A series of Eu3+‐activated NaLi2PO4 novel phosphors was synthesized by the solid‐state reaction method. The X‐ray diffraction (XRD) and photoluminescence (PL) properties of these phosphors were investigated at room temperature. The excitation spectra indicate that these phosphors can be effectively excited by near‐UV (370–410 nm) light. The emission spectra exhibit strong reddish‐orange performance, which is due to the 5D07FJ transitions of Eu3+ ions. The orange emission from transition 5D07F1 is dominant over that of 5D07F2. The concentration quenching of Eu3+ was observed in NaLi2PO4:Eu3+ when the Eu concentration was at 1 mol%. The impact of doping Eu3+ and photoluminescence properties were investigated and we propose a feasible interpretation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Lanthanide (Ln) fluorides are considered exceptional luminescent rigid host matrices for various optical active Ln3+ ions due to their high refractive index, high chemical stability and low phonon energy, leading to the low probability of non‐radiative decay, which results in higher photoluminescence quantum yield (PLQY) (usually higher than oxide hosts). In this study, Eu3+‐activated Ln fluorides (LnF3:Eu3+–Ln = La, Gd) are synthesized by the hydrothermal method using 1‐butyl‐3‐methylimidazolium tertrafluoroborate [BMIBF4] and NH4F as fluorine precursors. The synthesized nanocrystals (NCs) are structurally and morphologically characterized, and their optical properties investigated using spectrofluorometry. The X‐ray diffraction (XRD) patterns of Eu3+‐substituted and ‐unsubstituted LnF3 (prepared from a different fluorine source) are indexed based on the hexagonal and orthorhombic crystal structure, respectively. Average crystalline sizes are calculated using the Scherrer equation and it is found that the synthesized NCs have an average crystalline size of 12–35 nm. Transmission electron microscopy (TEM) images reveal that the NCs are well dispersed and nearly ellipsoid, with an average size of ~ 5 nm. Eu3+‐activated NCs show characteristic excitation and emission spectra. The emission spectra show both magnetic (5D07F1) and electric (5D07F2) dipole transition with appropriate CIE color coordinates; however, the intensity of the magnetic dipole transition is high, which is in accordance with local site symmetry. Owing to their unique size and excellent optical properties, the synthesized NCs may have potential application in the fields bio‐imaging and solar concentrators. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Peng Du  Jae Su Yu 《Luminescence》2017,32(8):1504-1510
A series of Sm3+‐activated Sr3La(VO4)3 phosphors were synthesized by a facile sol‐gel method. X‐ray diffraction patterns and photoluminescence (PL)/cathodoluminescence (CL) spectra as well as PL decay curves were employed to characterize the obtained samples. Upon 402 nm light excitation, the characteristic emissions of Sm3+ ions corresponding to 4G5/26HJ transitions were observed in all the as‐prepared products. The PL emission intensity was increased with increase in Sm3+ ion concentration, while concentration quenching occurred when the doping concentration was over 4 mol%. The non‐radiative energy transfer mechanism for concentration quenching of Sm3+ ions was dominated by dipole–dipole interaction and the critical distance was around 21.59 Å. Furthermore, temperature‐dependent PL emission spectra revealed that the obtained phosphors possessed good thermal stability with an activation energy of 0.19 eV. In addition, the CL spectra of the samples were almost the same as the PL spectra, and the CL emission intensity showed a tendency to increase with increase in accelerating voltage and filament current. These results suggest that the Sm3+‐activated Sr3La(VO4)3 phosphors with good color coordinates, high color purity and superior thermal stability may be a potential candidate for applications in white light‐emitting diodes and field‐emission displays as red‐emitting phosphors.  相似文献   

7.
This work reports the photoluminescence properties of Ca3Mg3(PO4)4:Sm3+ phosphors that were synthesized by the combustion method. The phase formation and morphology of the prepared phosphors were analysed by X‐ray diffraction studies and scanning electron microscopy. Ca3Mg3(PO4)4:Sm3+ phosphors give orange light emission when excited by near‐ultraviolet (NUV) and blue light. The photoluminescence characteristics of the as‐prepared phosphors were investigated and their emission spectra showed three peaks due to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions. The mechanism responsible for the concentration quenching of luminescence was found to be an electric dipole–dipole interaction. The CIE chromaticity coordinates suggested that the prepared phosphors are potential candidates for orange light‐emitting diodes (LEDs).  相似文献   

8.
A series of Ce3+‐activated blue‐emitting phosphors BaY2Si3O10 (BYSO) was designed and synthesized by a conventional solid‐state method. Upon ultraviolet light (250–370 nm) excitation, the obtained phosphors showed an intense blue emission band centered at 400–427 nm depending on doping concentration, and corresponding to the 5d→4f transition of Ce3+. The effects of doping concentration on crystal structure, emitting color, photoluminescence and photoluminescence excitation spectra, as well as the concentration quenching mechanism were studied in detail. The optimal doping concentration of Ce3+ in this phosphor was demonstrated to be about 0.75% and the concentration quenching mechanism can be ascribed to electric dipole–dipole interactions with a critical distance of ~38 Å. These fine luminescence properties indicate that BYSO:Ce3+ may be a potential blue phosphor for full‐color ultra‐violet (UV) white light emitting diodes (WLEDs).  相似文献   

9.
K2TiF6:Mn4+ red phosphors with different Mn4+ doping concentrations were obtained using the co‐precipitation method. X‐Ray diffraction, scanning electron microscopy, Raman spectra, Fourier transform infrared spectroscopy, photoluminescence excitation and emission spectra and decay curves were used to characterize the properties of K2TiF6:Mn4+ phosphors. Under excitation at 470 nm, an intense red emission peak around 631 nm corresponding to the 2Eg4A2 transition of Mn4+ was observed for 2.48 mol% K2TiF6:Mn4+ phosphors and was used as the optimum doping concentration. The excellent luminescent properties of K2TiF6:Mn4+ suggest that this material might be a promising red phosphor for generating warm white light in phosphor‐converted white light‐emitting diodes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Under a 980‐nm excitation, the up‐conversion (UC) spectra of LuNbO4:Yb3+,Tm3+ powders exhibited predominantly near‐infrared bands (~805 nm) of Tm3+ through an energy transfer process from Yb3+ to Tm3+. Regarding the down‐conversion (DC) luminescence of the powders, the photoluminescence excitation spectra consisted of a broad charge transfer band (270 nm) due to [NbO4]3? and sharp band (360 nm) of Tm3+, while the corresponding emission spectra exhibited a blue emission at 458 nm. Upon substitution of Ga3+ and Ta5+ for Lu3+ and Nb5+, respectively, both UC and DC luminescence properties were significantly enhanced. For the Ga3+ substitution, the increased emission intensity could be explained by the crystal field asymmetry surrounding the Tm3+ ions induced by the large difference in ionic radius between Ga3+ and Lu3+. For the Ta5+ substitution, we believe that an M′‐LuTaO4 substructure was formed in the host, which led to the formation of a TaO6 octahedral coordination instead of a NbO4 tetrahedral coordination. Consequently, the crystal symmetry of the local structure was modified, and thus the UC and DC luminescence properties were enhanced. The dual‐mode (UC and DC) luminescence demonstrates that LuNbO4:Yb3+,Tm3+ has a great potential in the fields of temperature sensing probes, anti‐counterfeiting, and bioapplications.  相似文献   

11.
A new Eu3+‐substituted CsK2Y[VO4]2 glaserite‐type orthovanadate phosphor was synthesized by the conventional high temperature solid‐state reaction method. The phase purity was confirmed by powder X‐ray diffraction study and it reveals that all the compositions crystallize in the hexagonal structure. The morphology and elemental composition were measured by FE‐SEM with Energy Dispersive Analysis Of X Rays (EDAX). The band gap is determined by diffuse reflectance spectra. The self‐activated luminescence of the host and Eu3+‐substituted luminescence behaviours were studied in detail by photoluminescence spectra. The host CsK2Y[VO4]2 shows green emission, whereas the Eu3+‐substituted compositions show red emission. Effect of Eu3+ concentrations on the photoluminescence behaviour were also been studied. The Eu3+‐doped samples show not only several sharp emission lines but also a broad emission band due to presence of the [VO4]3? in the host, which clearly indicates that there is incomplete energy transfer from (VO4) charge transfer band to Eu3+. The life time of the phosphors also been studied. The Commission Internationale de l'Eclairage (CIE) chromaticity colour coordinates were calculated and it is very much closer to the National Television Standard Committee (NTSC) standards. These investigations evidently reveal that the self‐activated and Eu3+‐activated phosphors show a great potential applications as a red phosphor for solid‐state lighting includes white light‐emitting diodes (wLEDs).  相似文献   

12.
An orange‐emitting phosphor, Eu2+‐activated LiSr4(BO3)3, was synthesized using the conventional solid‐state reaction. The photoluminescence excitation and emission spectra, and temperature dependence of the luminescence intensity of the phosphor were investigated. The results showed that LiSr4(BO3)3:Eu2+ could be efficiently excited by incident light of 250–450 nm, and emits a strong orange light. With increasing temperature, the emission bands of LiSr4(BO3)3:Eu2+ show an abnormal blue‐shift with broadening bandwidth and decreasing emission intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A novel phosphor LiBaPO4 doped with rare earths Eu and Dy prepared by high temperature solid‐state reaction method is reported. The phosphors were characterized by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The emission and excitation spectra of these materials were measured at room temperature with a spectrofluorophotometer. The excitation spectra of LiBaPO4:Eu3+ phosphor can be efficiently excited by 394 nm, which is matched well with the emission wavelength of near‐UV light‐emitting diode (LED) chip. PL properties of Eu3+‐doped LiBaPO4 exhibited the characteristic red emission coming from 5D07 F1 (593 nm) and 5D07 F2 (617 nm) electronic transitions with color co‐ordinations of (0.680, 0.315). The results demonstrated that LiBaPO4:Eu3+ is a potential red‐emitting phosphor for near‐UV LEDs. Emission spectra of LiBaPO4:Dy3+ phosphors showed efficient blue (481 nm) and yellow (574 nm) bands, which originated from 4 F9/26H15/2 and 4 F9/26H13/2 transitions of the Dy3+ ion, respectively. The 574 nm line is more intense than the 481 nm lines, which indicates that the site Dy3+ is located with low symmetry. This article summarizes fundamentals and possible applications of optically useful inorganic phosphates with visible photoluminescence of Eu3+ and Dy3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A novel blue luminescent 6‐chloro‐2‐(4‐cynophenyl) substituted diphenyl quinoline (Cl‐CN DPQ) organic phosphor has been synthesized by the acid‐catalyzed Friedlander reaction and then characterized to confirm structural, optical and thermal properties. Structural properties of Cl‐CN‐DPQ were analyzed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, X‐ray diffraction technique (XRD) and scanning electron microscopy (SEM) and energy dispersive analysis of X‐ray (EDAX) spectroscopy. FTIR spectra confirmed the presence of different functional groups and bond stretching. 1H–NMR and 13C–NMR confirmed the formation of an organic Cl‐CN‐DPQ compound. X‐ray diffraction study provided its crystalline nature. The surface morphology of Cl‐CN‐DPQ was analyzed by SEM, while EDAX spectroscopy revealed the elemental analysis. Differential thermal analysis (TGA/DTA) disclosed its thermal stability up to 250°C. The optical properties of Cl‐CN‐DPQ were investigated by UV–vis absorption and photoluminescence (PL) measurements. Cl‐CN‐DPQ exhibits intense blue emission at 434 nm in a solid‐state crystalline powder with CIE co‐ordinates (0.157, 0.027), when excited at 373 nm. Cl‐CN‐DPQ shows remarkable Stokes shift in the range 14800–5100 cm?1, which is the characteristic feature of intense light emission. A narrow full width at half‐maximum (FWHM) value of PL spectra in the range 42–48 nm was observed. Oscillator strength, energy band gap, quantum yield, and fluorescence energy yield were also examined using UV–vis absorption and photoluminescence spectra. These results prove its applications towards developing organic luminescence devices and displays, organic phosphor‐based solar cells and displays, organic lasers, chemical sensors and many more.  相似文献   

15.
The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy3+ activated LiCaBO3 shows emission at 486 and 577 nm due to 4 F9/26H15/2 and 4 F9/26H13/2 transition, respectively, whereas the PL emission spectra of Ce3+ activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce3+ ion. The thermoluminescence study was also carried out for both these phosphors for γ‐ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4–3.1 Rad dose γ‐rays. Linear behaviour over this dose range was observed. Gamma ray‐irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C5+ ion beam exposure in the range of 3.75 × 1012 – 7.5 × 1013 ion cm–2 fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
We report the photoluminescence characterization of Dy3+‐activated NaM4(VO4)3 (M = Ca, Ba, Sr) phosphors prepared by a solid‐state method. The synthesis was confirmed by X‐ray diffraction (XRD) characterization and photoluminescence (PL) emission results showed sharp blue and yellow bands for NaM4(VO4)3 (M = Ca, Ba, Sr):Dy3+ phosphors at the excitation wavelength of 323 nm, which is near‐UV excitation. Thus, these phosphors could be applicable for near‐UV excited solid‐state lighting devices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
An energy transfer process from Ce3+ to Tb3+ ions was successfully achieved in a Li2SO4–Al2(SO4)3 mixed‐sulphate system. A wet‐chemical synthesis was employed to prepare the Li2SO4–Al2(SO4)3 system by doping Ce3+ and Tb3+ ions individually as well as collectively. The phases were identified using X‐ray diffraction studies. The as‐prepared samples were characterized by FT‐IR and photoluminescence measurements. Green‐light emission was exhibited by Ce3+, Tb3+ co‐doped Li2SO4–Al2(SO4)3 system, thus, indicating its potential as a material for display devices or in the lamp industry.  相似文献   

18.
A series of single‐phase full‐color emitting Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors were synthesized by solid‐state reaction and characterized by X‐ray diffraction and photoluminescence analyses. The samples showed emission peaks at 488 nm (blue), 572 nm (yellow), 592 nm (orange) and 617 nm (red) under 393 nm excitation. The photoluminescence excitation spectra, comprising the Eu–O charge transfer band and 4f–4f transition bands of Dy3+ and Eu3+, range from 200 to 500 nm. The Commission Internationale de I'Eclairage chromaticity coordinates for Li2Sr0.98−xSiO4:0.02Dy3+,xEu3+ phosphors were simulated. By manipulating Eu3+ and Dy3+ concentrations, the color points of Li2Sr1−x−ySiO4:xDy3+,yEu3+ were tuned from the greenish‐white region to white light and eventually to reddish‐white region, demonstrating that a tunable white light can be obtained by Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors. Li2Sr0.98−xSiO4:0.02Dy3+, xEu3+ can serve as a white‐light‐emitting phosphor for phosphor‐converted light‐emitting diode. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Europium ion (Eu2+) doped Sr2SiO4 phosphors with greenish‐yellow emission were synthesized using microwave‐assisted sintering. The phase structure and photoluminescence (PL) properties of the obtained phosphor samples were investigated. The PL excitation spectra of the Sr2SiO4:Eu2+ phosphors exhibited a broad band in the range of 260 nm to 485 nm with a maximum at 361 nm attributed to the 5f‐4d allowed transition of the Eu2+ ions. Under an excitation at 361 nm, the Sr2SiO4:Eu2+ phosphor exhibited a greenish‐yellow emission peak at 541 nm with an International‐Commission‐on‐Illumination (CIE) chromaticity of (0.3064, 0.4772). The results suggest that the microwave‐assisted sintering method is promising for the synthesis of phosphors owing to the decreased sintering time without the use of additional reductive agents.  相似文献   

20.
《Luminescence》2017,32(3):334-340
A series of Eu2+‐activated barium orthosilicates (BaZnSiO4) were synthesized using a high‐temperature solid‐state reaction. A photoluminescence excitation study of Eu2+ shows a broad absorption band in the range of 270–450 nm, with multiple absorption peak maxima (310, 350 and 400 nm) due to 4f–5d electronic transition. The emission spectra of all the compositions show green color emission (in the spectral region 450–550 nm with a peak maximum at 502 nm and a shoulder at ~ 490 nm) with appropriate Comission Internationale de l'Eclairage (CIE) color coordinates. The two emission peaks are due to the presence of Eu2+ in two different Ba sites in the BaZnSiO4 host lattice. The energy transfers between the Eu2+ ions in BaZnSiO4 host are elucidated from the critical concentration quenching data based on the electronic multipolar interaction. All Eu2+‐activated BaZnSiO4 phosphor materials can be efficiently excited in the ultraviolet (UV) to near UV‐region (270–420 nm), making them attractive candidate as a green phosphor for solid state lighting–white light‐emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号