首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis of the thermodynamics of protein stability reveals a general tendency for proteins that denature at higher temperatures to have greater free energies of maximal stability. To a reasonable approximation, the temperature of maximal stability for the set of globular, water-soluble proteins surveyed by Robertson and Murphy occurs at T* approximately 283K, independent of the heat denaturation temperature, T(m). This observation indicates, at least for these proteins, that thermostability tends to be achieved through elevation of the stability curve rather than by broadening or through a horizontal shift to higher temperatures. The relationship between the free energy of maximal stability and the temperature of heat denaturation is such that an increase in maximal stability of approximately 0.008 kJ/mole/residue is, on average, associated with a 1 degrees C increase in T(m). An estimate of the energetic consequences of thermal expansion suggests that these effects may contribute significantly to the destabilization of the native state of proteins with increasing temperature.  相似文献   

2.
An experimental-theoretical approach for the elucidation of protein stability is proposed. The theoretical prediction of pH-dependent protein stability is based on the macroscopic electrostatic model for calculation of the pH-dependent electrostatic free energy of proteins. As a test of the method we have considered the pH-dependent stability of sperm whale metmyoglobin. Two theoretical methods for evaluation of the electrostatic free energy and p K values are applied: the finite-difference Poisson-Boltzmann method and the semiempirical approach based on the modified Tanford-Kirkwood theory. The theoretical results for electrostatic free energy of unfolding are compared with the experimental data for guanidine hydrochloride unfolding under equilibrium conditions over a wide pH range. Using the optical parameters of the Soret absorbance to monitor conformational equilibrium and Tanford's method to estimate the resulting data, it was found that the conformational free energy of unfolding of metmyoglobin is 16.3 kcal mol(-1) at neutral pH values. The total unfolding free energies were calculated on the basis of the theoretically predicted electrostatic unfolding free energies and the experimentally measured midpoints (pH(1/2)) of acidic and alkaline denaturation transitions. Experimental data for alkaline denaturation were used for the first time in theoretical analysis of the pH-dependent unfolding of myoglobin. The present results demonstrate that the simultaneous application of appropriate theoretical and experimental methods permits a more complete analysis of the pH-dependent and pH-independent properties and stability of globular proteins.  相似文献   

3.
Thermally stable proteins are desirable for research and industrial purposes, but redesigning proteins for higher thermal stability can be challenging. A number of different techniques have been used to improve the thermal stability of proteins, but the extents of stability enhancement were sometimes unpredictable and not significant. Here, we systematically tested the effects of multiple stabilization techniques including a bioinformatic method and structure‐guided mutagenesis on a single protein, thereby providing an integrated approach to protein thermal stabilization. Using a mesophilic adenylate kinase (AK) as a model, we identified stabilizing mutations based on various stabilization techniques, and generated a series of AK variants by introducing mutations both individually and collectively. The redesigned proteins displayed a range of increased thermal stabilities, the most stable of which was comparable to a naturally evolved thermophilic homologue with more than a 25° increase in its thermal denaturation midpoint. We also solved crystal structures of three representative variants including the most stable variant, to confirm the structural basis for their increased stabilities. These results provide a unique opportunity for systematically analyzing the effectiveness and additivity of various stabilization mechanisms, and they represent a useful approach for improving protein stability by integrating the reduction of local structural entropy and the optimization of global noncovalent interactions such as hydrophobic contact and ion pairs. Proteins 2014; 82:1947–1959. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
The statistical thermodynamic model of protein structure proposed in paper I is developed with special attention to the hydrophobic interaction. Calorimetric measurements of the thermal denaturation of five globular proteins, ribonuclease A, lysozyme, alpha-chymotrypsin, cytochrome c, and myoglobin, are quantitatively analyzed using the model. The thermodynamic parameters obtained by the least squares method reflect the global, average properties of proteins and are in good agreement with the expected values estimated from experimental and theoretical studies for model peptides. The average bond energy epsilon is well related to the tertiary structure of each protein. However, the difference in the parameters between different proteins is not observed for the cooperative energy ZJ and the chain entropy alpha. The individuality of a protein as far as its structural stability is concerned, is mainly reflected by the parameter gamma specifying the hydrophobic nature of a protein. The model is further applied in the analysis of several aspects of the structural stability of globular proteins. Denaturation induced by denaturants, salts, and pH are also explained by the model in a unified manner.  相似文献   

5.
The conformational stability of dimeric globular proteins can be measured by equilibrium denaturation studies in solvents such as guanidine hydrochloride or urea. Many dimeric proteins denature with a 2-state equilibrium transition, whereas others have stable intermediates in the process. For those proteins showing a single transition of native dimer to denatured monomer, the conformational stabilities, delta Gu (H2O), range from 10 to 27 kcal/mol, which is significantly greater than the conformational stability found for monomeric proteins. The relative contribution of quaternary interactions to the overall stability of the dimer can be estimated by comparing delta Gu (H2O) from equilibrium denaturation studies to the free energy associated with simple dissociation in the absence of denaturant. In many cases the large stabilization energy of dimers is primarily due to the intersubunit interactions and thus gives a rationale for the formation of oligomers. The magnitude of the conformational stability is related to the size of the polypeptide in the subunit and depends upon the type of structure in the subunit interface. The practical use, interpretation, and utility of estimation of conformational stability of dimers by equilibrium denaturation methods are discussed.  相似文献   

6.
Actin is one of the most abundant proteins in nature. It is found in all eukaryotes and plays a fundamental role in many diverse and dynamic cellular processes. Also, actin is one of the most ubiquitous proteins because actin-like proteins have recently been identified in bacteria. Actin filament (F-actin) is a highly dynamic structure that can exist in different conformational states, and transitions between these states may be important in cytoskeletal dynamics and cell motility. These transitions can be modulated by various factors causing the stabilization or destabilization of actin filaments. In this review, we look at actin stabilization and destabilization as expressed by changes in the thermal stability of actin; specifically, we summarize and analyze the existing data on the thermal unfolding of actin as measured by differential scanning calorimetry. We also analyze in vitro data on the heat-induced aggregation of actin, the process that normally accompanies actin thermal denaturation. In this respect, we focus on the effects of small heat shock proteins, which can prevent the aggregation of thermally denatured actin with no effect on actin thermal unfolding. As a result, we have proposed a mechanism describing the thermal denaturation and aggregation of F-actin. This mechanism explains some of the special features of the thermal unfolding of actin filaments, including the effects of their stabilization and destabilization; it can also explain how small heat shock proteins protect the actin cytoskeleton from damage caused by the accumulation of large insoluble aggregates under heat shock conditions.  相似文献   

7.
To investigate the structural stability of proteins, we analyzed the thermodynamics of an artificially designed 30-residue peptide. The designed peptide, NH2-EELLPLAEALAPLLEALLPLAEALAPLLKK-COOH (PERI COIL-1), with prolines at i + 7 positions, forms a pentameric alpha-helical structure in aqueous solution. The thermal denaturation curves of the CD at 222 nm (pH 7.5) show an unusual cold denaturation occurring well above 0 degrees C and no thermal denaturation is observable under 90 degrees C. This conformational change is reversible and depends on peptide concentration. A 2-state model between the monomeric denatured state (5D) and the pentameric helical state (H5) was sufficient to analyze 5 thermal denaturation curves of PERI COIL-1 with concentrations between 23 and 286 microM. The analysis was carried out by a nonlinear least-squares method using 3 fitting parameters: the midpoint temperature, Tm, the enthalpy change, delta H(Tm), and the heat capacity change, delta Cp. The association number (n = 5) was determined by sedimentation equilibrium and was not used as a fitting parameter. The heat capacity change suggests that the hydrophobic residues are buried in the helical state and exposed in the denatured one, as it occurs normally for natural globular proteins. On the other hand, the enthalpy and the entropy changes have values close to those found for coiled-coils and are quite distinct from typical values reported for natural globular proteins. In particular, the enthalpy change extrapolated at 110 degrees C is about 3 kJ/mol per amino acid residue, i.e., half of the value found for globular proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
High-sensitivity differential scanning calorimetry and CD spectroscopy have been used to probe the structural stability and measure the folding/unfolding thermodynamics of a Pro117-->Gly variant of staphylococcal nuclease. It is shown that at neutral pH the thermal denaturation of this protein is well accounted for by a 2-state mechanism and that the thermally denatured state is a fully hydrated unfolded polypeptide. At pH 3.5, thermal denaturation results in a compact denatured state in which most, if not all, of the helical structure is missing and the beta subdomain apparently remains largely intact. At pH 3.0, no thermal transition is observed and the molecule exists in the compact denatured state within the 0-100 degrees C temperature interval. At high salt concentration and pH 3.5, the thermal unfolding transition exhibits 2 cooperative peaks in the heat capacity function, the first one corresponding to the transition from the native to the intermediate state and the second one to the transition from the intermediate to the unfolded state. As is the case with other proteins, the enthalpy of the intermediate is higher than that of the unfolded state at low temperatures, indicating that, under those conditions, its stabilization must be of an entropic origin. The folding intermediate has been modeled by structural thermodynamic calculations. Structure-based thermodynamic calculations also predict that the most probable intermediate is one in which the beta subdomain is essentially intact and the rest of the molecule unfolded, in agreement with the experimental data. The structural features of the equilibrium intermediate are similar to those of a kinetic intermediate previously characterized by hydrogen exchange and NMR spectroscopy.  相似文献   

9.
Ragone R 《Proteins》2004,54(2):323-332
This article shows that the stability profiles of thermophilic proteins are significantly displaced toward higher temperatures as compared to those of mesophilic proteins. A similar trend characterizes the aqueous transfer of N-alkyl amides. In fact, as a general feature of transfer processes, liquid dissolution profiles are centered at temperatures higher than those of solid ones. This behavior is governed by packing contributions. A partition of the unfolding thermodynamics based on the analysis of phenomenological temperatures common to dissolution and unfolding phenomena provides a clue to understanding the mechanism of thermal stabilization. In fact, the position of stability profiles along the temperature axis does not appear to depend on solvation of internal residues. Instead, it is notably affected by solidlike components, whose progressive decrease appears to drive the heat denaturation temperature increase of most thermostable proteins. As a corollary, it is shown that there are actually two limiting mechanisms of thermal stabilization.  相似文献   

10.
The effect of the single, site-specific interstrand cross-link formed by cisplatin or transplatin on the thermal stability and energetics of a 20-base pair DNA duplex is reported. The cross-linked or unplatinated 20-base pair duplexes were investigated with the aid of differential scanning calorimetry, temperature-dependent UV absorption, and circular dichroism. The cross-link of both platinum isomers increases the thermal stability of the modified duplexes by changing the molecularity of denaturation. The structural perturbation resulting from the interstrand cross-link of cisplatin increases entropy of the duplex and in this way entropically stabilizes the duplex. This entropic cross-link-induced stabilization of the duplex is partially but not completely compensated by the enthalpic destabilization of the duplex. The net result of these enthalpic and entropic effects is that the structural perturbation resulting from the formation of the interstrand cross-link by cisplatin induces a decrease in duplex thermodynamic stability, with this destabilization being enthalpic in origin. By contrast, the interstrand cross-link of transplatin is enthalpically almost neutral with the cross-link-induced destabilization entirely entropic in origin. These differences are consistent with distinct conformational distortions induced by the interstrand cross-links of the two isomers. Importantly, for the duplex cross-linked by cisplatin relative to that cross-linked by transplatin, the compensating enthalpic and entropic effects almost completely offset the difference in cross-link-induced energetic destabilization. It has been proposed that the results of the present work further support the view that the impact of the interstrand cross-links of cisplatin and transplatin on DNA is different for each and might also be associated with the distinctly different antitumor effects of these platinum compounds.  相似文献   

11.
Approaches for increasing the solution stability of proteins   总被引:1,自引:0,他引:1  
Stabilization of proteins through proper formulation is an important challenge for the pharmaceutical industry. Two approaches for stabilization of proteins in solution are discussed. First, work describing the effect of additives on the thermally induced denaturation and aggregation of low molecular weight urokinase is presented. The effects of these additives can be explained by preferential exclusion of the solute from the protein, leading to increased thermal stability with respect to denaturation. Diminished denaturation leads to reduced levels of aggregation. The second approach involves stoichiometric replacement of polar counter ions (e.g., chloride, acetate, etc.) with anionic detergents, in a process termed hydrophobic ion pairing (HIP). The HIP complexes of proteins have increased solubility in organic solvents. In these organic solvents, where the water content is limited, the thermal denautration temperatures greatly exceed those observed in aqueous solution. In addition, it is possible to use HIP to selectively precipitate basic proteins from formulations that contain large amounts of stabilizers, such as human serum albumin (HSA), with a selectivity greater than 2000-fold. This has been demonstrated for various mixtures of HSA and interleukin-4. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
Hydrogen bonding stabilizes globular proteins.   总被引:8,自引:1,他引:7       下载免费PDF全文
It is clear that intramolecular hydrogen bonds are essential to the structure and stability of globular proteins. It is not clear, however, whether they make a net favorable contribution to this stability. Experimental and theoretical studies are at odds over this important question. Measurements of the change in conformational stability, delta (delta G), for the mutation of a hydrogen bonded residue to one incapable of hydrogen bonding suggest a stabilization of 1.0 kcal/mol per hydrogen bond. If the delta (delta G) values are corrected for differences in side-chain hydrophobicity and conformational entropy, then the estimated stabilization becomes 2.2 kcal/mol per hydrogen bond. These and other experimental studies discussed here are consistent and compelling: hydrogen bonding stabilizes globular proteins.  相似文献   

13.
The thermal properties of the beta-lactoglobulin-water system were investigated by differential scanning calorimetry in the temperature range from -50 to 130 degrees C. Determination of the heat and temperature of fusion of the absorbed water allowed resolution of the water into four different states. The amounts of water in these states were different for samples before and after heat denaturation. In the case of denatured beta-lactoglobulin, a smaller amount of water with thermal properties different from ordinary water was observed and its total water binding capacity was lower. The thermal stability of beta-lactoglobulin in the water content range from 0 to 0.75 g/g showed a strong dependence on the degree of hydration. A correlation was observed between the changes in the thermal stability of the protein and the changes in the state of the absorbed water. The results are compared with those obtained from similar measurements of other globular proteins and of fibrillar proteins.  相似文献   

14.
Small monomeric proteins from mesophilic and thermophilic organisms were studied. They have close structural and physical and chemical properties but vary in thermal stability. A thermodynamic analysis of heat unfolding was made and integral enthalpy of unfolding (DeltaH(unf)), heat capacity of hydration (DeltaC(p)(hyd)) and enthalpy of hydration (DeltaH(hyd)) and of the buried surface area (DeltaASA) of nonpolar and polar groups as well as the enthalpy of disruption of intramolecular interaction (DeltaH(int) in gas phase) at 298 K were determined. The absence of correlation between protein thermostability and energetic components suggests that regulatory mechanism of protein thermal stabilization has entropic nature.  相似文献   

15.
Topological linking of proteins is a new approach for stabilizing and controlling the oligomerization state of proteins that fold in an interwined manner. The recent design of a backbone cyclized protein catenane based on the p53tet domain suggested that topological cross-linking provided increased stability against thermal and chemical denaturation. However, the tetrameric structure complicated detailed biophysical analysis of this protein. Here, we describe the design, synthesis and thermodynamic characterization of a protein catenane based on a dimeric mutant of the p53tet domain (M340E/L344K). The formation of the catenane proceeded efficiently, and the overall structure and oligomerization of the domain was not affected by the formation of the topological link. Unfolding and refolding of the catenane was consistent with a two-state process. The topological link stabilized the dimer against thermal and chemical denaturation considerably, raising the apparent melting temperature by 59 degrees C and the midpoint of denaturation by 4.5M GuHCl at a concentration of 50 microM. The formation of the topological link increased the resistance of the dimer to proteolysis. However, the m value decreased by 1.7kcalmol(-1)M(-1), suggesting a decrease in accessible surface area in the unfolded state. This implies that the stabilization from the topological link is largely due to a destabilization of the unfolded state, similar to other cross-links in proteins. Topological linking therefore provides a powerful and orthogonal tool for the stabilization of peptide and protein oligomers.  相似文献   

16.
The molecular basis of thermal stability of globular proteins is a highly significant yet unsolved problem. The most promising approach to its solution is the investigation of the structure-function relationship of homologous enzymes from mesophilic and thermophilic sources. In this context, D-glyceraldehyde-3-phosphate dehydrogenase has been the most extensively studied model system. In the present study, the most thermostable homolog isolated so far is described with special emphasis on the stability of the enzyme under varying solvent conditions. D-Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima is an intrinsically thermostable enzyme with a thermal transition temperature around 110 degrees C. The amino acid sequence, electrophoresis, and sedimentation analysis prove the enzyme to be a homotetramer with a gross structure similar to its mesophilic counterparts. The enzyme in the absence and in the presence of its coenzyme, NAD+, exhibits no drastic structural differences except for a 3% change in sedimentation velocity reflecting slight alterations in the quaternary structure of the enzyme. At low temperature, in the absence of denaturants, neither "cold denaturation" nor subunit dissociation are detectable. Guanidinium chloride and pH-dependent deactivation precede the decrease in fluorescence emission and ellipticity, suggesting a complex denaturation mechanism. An up to 3-fold activation of the enzyme at low guanidinium concentration may be interpreted in terms of a compensation of the tight packing of the thermophilic enzyme at low temperature. Under destabilizing conditions, e.g. moderate concentrations of chaotropic agents, low temperature favors denaturation. The effect becomes important in reconstitution experiments after preceding guanidinium denaturation; the reactivation yield at low temperature drops to zero, whereas between 35 and 80 degrees C reactivation exceeds 80%. Shifting the temperature from approximately 0 degrees C to greater than or equal to 30 degrees C releases a trapped tetrameric intermediate in a fast reaction. Concentration-dependent reactivation experiments prove renaturation of the enzyme to involve consecutive folding and association steps. Reconstitution at room temperature yields the native protein, in spite of the fact that the temperature of the processes in vitro and in vivo differ by more than 60 degrees C.  相似文献   

17.
Structural characteristics of numerous globular proteins in the denatured state have been reviewed using literature data. Recent more precise experiments show that in contrast to the conventional standpoint, proteins under strongly denaturing conditions do not unfold completely and adopt a random coil state, but contain significant residual ordered structure. These results cast doubt on the basis of the conventional approach representing the process of protein folding as a spontaneous transition of a polypeptide chain from the random coil state to the unique globular structure. The denaturation of proteins is explained in terms of the physical properties of proteins such as stability, conformational change, elasticity, irreversible denaturation, etc. The spontaneous renaturation of some denatured proteins most probably is merely the manifestation of the physical properties (e.g., the elasticity) of the proteins per se, caused by the residual structure present in the denatured state. The pieces of the ordered structure might be the centers of the initiation of renaturation, where the restoration of the initial native conformation of denatured proteins begins. Studies on the denaturation of proteins hardly clarify how the proteins fold into the native conformation during the successive residue-by-residue elongation of the polypeptide chain on the ribosome.  相似文献   

18.
Rational engineering of enzyme stability   总被引:11,自引:0,他引:11  
During the past 15 years there has been a continuous flow of reports describing proteins stabilized by the introduction of mutations. These reports span a period from pioneering rational design work on small enzymes such as T4 lysozyme and barnase to protein design, and directed evolution. Concomitantly, the purification and characterization of naturally occurring hyperstable proteins has added to our understanding of protein stability. Along the way, many strategies for rational protein stabilization have been proposed, some of which (e.g. entropic stabilization by introduction of prolines or disulfide bridges) have reasonable success rates. On the other hand, comparative studies and efforts in directed evolution have revealed that there are many mutational strategies that lead to high stability, some of which are not easy to define and rationalize. Recent developments in the field include increasing awareness of the importance of the protein surface for stability, as well as the notion that normally a very limited number of mutations can yield a large increase in stability. Another development concerns the notion that there is a fundamental difference between the "laboratory stability" of small pure proteins that unfold reversibly and completely at high temperatures and "industrial stability", which is usually governed by partial unfolding processes followed by some kind of irreversible inactivation process (e.g. aggregation). Provided that one has sufficient knowledge of the mechanism of thermal inactivation, successful and efficient rational stabilization of enzymes can be achieved.  相似文献   

19.
Characteristics of a de novo designed protein.   总被引:1,自引:1,他引:0       下载免费PDF全文
A series of 204 amino acid proteins intended to form TIM (triose phosphate isomerase) barrel structures were designed de novo. Each protein was synthesized by expression of the synthetic gene as a fusion protein with a portion of human growth hormone in an Escherichia coli host. After BrCN treatment, the protein was purified to homogeneity. The refolded proteins are globular and exist as monomers. One of the designed proteins is stable toward guanidine hydrochloride (GuHCl) denaturation, with a midpoint of 2.6 M determined from CD and tryptophan fluorescence measurements. The GuHCl denaturation is well described by a 2-state model. The NMR spectra, the thermal denaturation curves, and the 1-anilino-8-naphthalene sulfonic acid binding imply that the stability of the protein arises mainly from hydrophobic interactions, which are probably of a nonspecific nature. The protein has a similar shape to that of rabbit triosephosphate isomerase, as determined by electron microscopy.  相似文献   

20.
Selective deamidation of proteins and peptides is a reaction of great interest, both because it has a physiological role and because it can cause alteration in the biological activity, local folding, and overall stability of the protein. In order to evaluate the thermodynamic effects of this reaction in proteins, we investigated the temperature-induced denaturation of ribonuclease A derivatives in which asparagine 67 was selectively replaced by an aspartyl residue or an isoaspartyl residue, as a consequence of an in vitro deamidation reaction. Differential scanning calorimetry measurements were performed in the pH range 3.0-6.0, where the unfolding process is reversible, according to the reheating criterion used. It resulted that the monodeamidated forms have a different thermal stability with respect to the parent enzyme. In particular, the replacement of asparagine 67 with an isoaspartyl residue leads to a decrease of 6.3 degrees C of denaturation temperature and 65 kJ mol-1 of denaturation enthalpy at pH 5.0. These results are discussed and correlated to the X-ray three-dimensional structure of this derivative. The analysis leads to the conclusion that the difference in thermal stability between RNase A and (N67isoD)RNase A is due to enthalpic effects arising from the loss of two important hydrogen bonds in the loop containing residue 67, partially counterbalanced by entropic effects. Finally, the influence of cytidine-2'-monophosphate on the stability of the three ribonucleases at pH 5.0 is studied and explained in terms of its binding on the active site of ribonucleases. The analysis makes it possible to estimate the apparent binding constant and binding enthalpy for the three proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号