首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previously, we generated P-element insert lines in Drosophila melanogaster with impaired olfactory behavior. One of these smell-impaired (smi) mutants, smi60E, contains a P[lArB] transposon in the second intron of the dsc1 gene near a nested gene encoding the L41 ribosomal protein. The dsc1 gene encodes an ion channel of unknown function homologous to the paralytic (para) sodium channel, which mediates neuronal excitability. Complementation tests between the smi60E mutant and several EP insert lines map the smell-impaired phenotype to the P[lArB] insertion site. Wild-type behavior is restored upon P-element excision. Evidence that reduction in DSC1 rather than in L41 expression is responsible for the smell-impaired phenotype comes from a phenotypic revertant in which imprecise P-element excision restores the DSC1 message while further reducing L41 expression. Behavioral assays show that a threefold decrease in DSC1 mRNA is accompanied by a threefold shift in the dose response for avoidance of the repellent odorant, benzaldehyde, toward higher odorant concentrations. In situ hybridization reveals widespread expression of the dsc1 gene in the major olfactory organs, the third antennal segment and the maxillary palps, and in the CNS. These results indicate that the DSC1 channel contributes to processing of olfactory information during the olfactory avoidance response.  相似文献   

3.
4.
The Drosophila nuclear lamina protein YA is essential for the transition from female meiosis to embryo mitosis. Its localization and, hence, function is under developmental and cell cycle controls. YA protein is hyperphosphorylated and cytoplasmic in ovaries. Upon egg activation, YA is partially dephosphorylated and acquires the ability to enter nuclei. Its function is first detected at this time. To investigate the cytoplasmic retention machinery that keeps YA from entering nuclei, we used affinity chromatography and blot overlay assays to identify cytoplasmic proteins that associate with YA. Drosophila P0/AP3, a ribosomal protein that is also an apurinic/apyrimidinic endonuclease, binds to YA in ovary and embryo cytoplasms. P0 and YA bind specifically and directly in vitro and are present in a 20S complex in the cytoplasmic extracts. YA protein can be phosphorylated by MAPK, but not by p34(Cdc2) kinase, in vitro. This phosphorylation increases YA's binding to P0. We propose that the P0-containing 20S cytoplasmic complex retains hyperphosphorylated ovarian YA in the cytoplasm. In response to egg activation, YA is partially dephosphorylated and its binding to the 20S complex is reduced. Hence, some YA dissociates from the complex and enters nuclei. Consistent with this model, decreasing P0 levels partially suppress a hypomorphic Ya mutant allele.  相似文献   

5.
6.
7.
8.
The genes cubitus interruptus (ci), ribosomal protein S3A (RpS3A), and pangolin (pan) are localized within 73 kb in the cytological region 101F-102A on chromosome IV in Drosophila melanogaster. A region of 13 kb harbours the regulatory regions of both ci and pan, transcribed in opposite directions, and a 1.1-kb gene encoding RpS3A. This dense clustering gives rise to very complicated complementation patterns between different alleles in these loci. We investigated this region genetically and molecularly by use of an enhancer trap line (IA5), where the P-element was found to be inserted into the first intron of pan. Screens for imprecise excisions of the P-element were performed, and complementations between new and old established mutant lines were investigated. We found that when mutated or deleted the RpS3A gene gives rise to a Minute phenotype, and we conclude that M(4)101 encodes the ribosomal protein S3A.  相似文献   

9.
Drosophila ribosomal protein PO was overexpressed in Escherichia coli to allow for its purification, biochemical characterization and to generate polyclonal antibodies for Western analysis. Biochemical tests were originally performed to see if overexpressed PO contained DNase activity similar to that recently reported for the apurinic/apyrimidinic (AP) lyase activity associated with Drosophila ribosomal protein S3. The overexpressed ribosomal protein was subsequently found to act on AP DNA, producing scissions that were in this case 5' of a baseless site instead of 3', as has been observed for S3. As a means of confirming that the source of AP endonuclease activity was in fact due to PO, glutathione S-transferase (GST) fusions containing a Factor Xa cleavage site between GST and PO were constructed, overexpressed in an E.coli strain defective for the major 5'-acting AP endonucleases and the fusions purified using glutathione-agarose affinity column chromatography. Isolated fractions containing purified GST-PO fusion proteins were subsequently found to have authentic AP endonuclease activity. Moreover, glutathione-agarose was able to deplete AP endonuclease activity from GST-PO fusion protein preparations, whereas the resin was ineffective in lowering DNA repair activity for PO that had been liberated from the fusion construct by Factor Xa cleavage. These results suggested that PO was a multifunctional protein with possible roles in DNA repair beyond its known participation in protein translation. In support of this notion, tests were performed that show that GST-PO, but not GST, was able to rescue an E.coli mutant lacking the major 5'-acting AP endonucleases from sensitivity to an alkylating agent. We furthermore show that GST-PO can be located in both the nucleus and ribosomes. Its nuclear location can be further traced to the nuclear matrix, thus placing PO in a subcellular location where it could act as a DNA repair protein. Other roles beyond DNA repair seem possible, however, since GST-PO also exhibited significant nuclease activity for both single- and double-stranded DNA.  相似文献   

10.
In holometabolous insects including Drosophila melanogaster a wave of autophagy triggered by 20-hydroxyecdysone is observed in the larval tissues during the third larval stage of metamorphosis. We used this model system to study the genetic regulation of autophagy. We performed a genetic screen to select P-element insertions that affect autophagy in the larval fat body. Light and electron microscopy of one of the isolated mutants (l(3)S005042) revealed the absence of autophagic vesicles in their fat body cells during the third larval stage. We show that formation of autophagic vesicles cannot be induced by 20-hydroxyecdysone in the tissues of mutant flies and represent evidence demonstrating that the failure to form autophagic vesicles is due to the insertion of a P-element into the gene coding SNF4Agamma, the Drosophila homologue of the AMPK (AMP-activated protein kinase) gamma subunit. The ability to form autophagic vesicles (wild-type phenotype) can be restored by remobilization of the P-element in the mutant. Silencing of SNF4Agamma by RNAi suppresses autophagic vesicle formation in wild-type flies. We raised an antibody against SNF4Agamma and showed that this gene product is constitutively present in the wild-type larval tissues during postembryonal development. SNF4Agamma is nearly absent from the cells of homozygous mutants. SNF4Agamma translocates into the nuclei of fat body cells at the onset of the wandering stage concurrently with the beginning of the autophagic process. Our results demonstrate that SNF4Agamma has an essential role in the regulation of autophagy in Drosophila larval fat body cells.  相似文献   

11.
12.
13.
14.
15.
Minutes comprise > 50 phenotypically similar mutations scattered throughout the genome of Drosophila, many of which are identified as mutations in ribosomal protein (rp) genes. Common traits of the Minute phenotype are short and thin bristles, slow development, and recessive lethality. By mobilizing a P element inserted in the 5'' UTR of M(3)95A, the gene encoding ribosomal protein S3 (RPS3), we have generated two homozygous viable heteroalleles that are partial revertants with respect to the Minute phenotype. Molecular characterization revealed both alleles to be imprecise excisions, leaving 40 and 110 bp, respectively, at the P-element insertion site. The weaker allele (40 bp insert) is associated with a approximately 15% decrease in RPS3 mRNA abundance and displays a moderate Minute phenotype. In the stronger allele (110 bp insert) RPS3 mRNA levels are reduced by approximately 60%, resulting in an extreme Minute phenotype that includes many morphological abnormalities as well as sterility in both males and females due to disruption of early gametogenesis. The results show that there is a correlation between reduced RPS3 mRNA levels and the severity of the Minute phenotype, in which faulty differentiation of somatic tissues and arrest of gametogenesis represent the extreme case. That heteroalleles in M(3)95A can mimic the phenotypic variations that exist between different Minute/rp-gene mutations strongly suggests that all phenotypes primarily are caused by reductions in maximum protein synthesis rates, but that the sensitivity for reduced levels of the individual rp-gene products is different.  相似文献   

16.
We describe new vectors suitable for P-element mediated germ line transformation of Drosophila melanogaster using passenger genes whose expression does not result in a readily detectable phenotypic change of the transformed flies. The P-element vectors contain the white gene fused to the heat shock protein 70 (hsp70) gene promoter. Expression of the white gene rescues the white phenotype of recipient flies partly or completely even without heat treatment. Transformed descendents of most founder animals (GO) fall into two classes which are distinguishable by their orange and red eye colours. The different levels of white expression are presumably due to position effects associated with different chromosomal sites of insertion. Doubling of the gene dose in orange eyed fly stocks results in an easily visible darkening of the eye colour. Consequently, the generation of homozygous transformants is easily possible by simple inbreeding due to the phenotypic distinction of homo- and heterozygous transformants. Cloning into these P-element vectors is facilitated by the presence of polylinkers with 8 and 12 unique restriction sites.  相似文献   

17.
18.
Two species of apurinic/apyrimidinic (AP) endonuclease have been purified approximately 400-fold from extracts of Drosophila embryos. AP endonuclease I, which flows through phosphocellulose columns, has an apparent subunit molecular weight of 66,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas AP endonuclease II, which is retained by phosphocellulose, has a subunit molecular weight of 63,000. The molecular weight determinations were made possible in part by the finding that both Drosophila enzymes, along with Escherichia coli endonuclease IV, cross-react with an antibody prepared toward a human AP endonuclease (Kane, C. M., and Linn, S. (1981) J. Biol. Chem. 256, 3405-3414). The nature of phosphodiester bond breaks produced by the two partially purified AP endonucleases from Drosophila have been investigated. Nicks introduced into partially depurinated PM2 DNA by Drosophila AP endonuclease I did not support DNA synthesis by E. coli DNA polymerase I, whereas nicks created by AP endonuclease II were able to support DNA synthesis, but at a rate far less than that observed for nicks introduced by E. coli endonuclease IV. The priming activity of DNA incised by either of the Drosophila enzymes can be enhanced, however, by an additional incubation with E. coli endonuclease IV, which is known to cleave depurinated DNA on the 5'-side of an apurinic site. These results suggest that the Drosophila enzymes cleave depurinated DNA on the 3'-side of the apurinic site. This suggestion was strengthened by the observation that the combined action of AP endonuclease II and E. coli endonuclease IV resulted in the removal of [32P]dAMP from partially depyrimidinated [dAMP-5'-32P,uracil-3H]poly(dA-dT). Taken together, these results propose that Drosophila AP endonuclease II produces 3'-deoxyribose and 5'-phosphomonoester nucleotide termini. Conversely, the absolute inability to detect priming activity for DNA cleaved by AP endonuclease I alone suggested a different mechanism, possibly the formation of a deoxyribose-3'-phosphate terminus. When apurinic DNA cleaved by AP endonuclease I was subsequently treated with bacterial alkaline phosphatase, DNA synthesis was now detected at levels similar to that observed for AP endonuclease II alone. Additionally, DNA nicked by AP endonuclease I was susceptible to 5'-end labeling by polynucleotide T4 kinase without prior phosphomonoesterase treatment. These results suggest that AP endonuclease I forms deoxyribose 3'-phosphate and 5'-OH termini upon cleaving depurinated DNA.  相似文献   

19.
Ionizing radiation and normal cellular respiration form reactive oxygen species that damage DNA and contribute to a variety of human disorders including tumor promotion and carcinogenesis. A major product of free radical DNA damage is the formation of 8-oxoguanine, which is a highly mutagenic base modification produced by oxidative stress. Here, Drosophila ribosomal protein S3 is shown to cleave DNA containing 8-oxoguanine residues efficiently, The ribosomal protein also contains an associated apurinic/apyrimidinic (AP) lyase activity, cleaving phosphodiester bonds via a beta,delta elimination reaction. The significance of this DNA repair activity acting on 8-oxoguanine is shown by the ability of S3 to rescue the H2O2 sensitivity of an Escherichia coli mutM strain (defective for the repair of 8-oxoguanine) and to abolish completely the mutator phenotype of mutM caused by 8-oxoguanine-mediated G-->T transversions. The ribosomal protein is also able to rescue the alkylation sensitivity of an E.coli mutant deficient for the AP endonuclease activities associated with exonuclease III (xth) and endonuclease IV (nfo), indicating for the first time that an AP lyase can represent a significant source of DNA repair activity for the repair of AP sites. These results raise the possibility that DNA repair may be associated with protein translation.  相似文献   

20.
Glutamate-cysteine ligase (GCL) has a key influence on glutathione homeostasis. It has been proposed that mammalian GCL is regulated by the redox environment, and we show here that cysteine residues in the Drosophila melanogaster GCL modifier subunit (DmGCLM) can form covalent interactions with the catalytic subunit (DmGCLC) and modify its activity. Candidate components of intersubunit disulfides (Cys213, Cys214, and Cys267) were identified using matrix-assisted laser desorption ionization time-of-flight spectroscopy of iodoacetamide-modified DmGCLM as well as examination of the evolutionary conservation of cysteines. Mutation of the 3 cysteine residues allowed DmGCLM to associate with DmGCLC, but inhibited the formation of intersubunit disulfides. This caused a 2-fold reduction in the catalytic efficiency of Drosophila GCL, although activity remained significantly higher than the catalytic subunit alone. The cysteine mutant was also more sensitive to inhibition by glutathione than the unmodified holoenzyme. Notably, human GCLM could substitute for DmGCLM in modification of DmGCLC activity. The role of DmGCLM in vivo was examined by analysis of a Drosophila mutant (l(3)L0580) containing a P-element insertion in Gclm. We found that the P-element is not responsible for the lethal phenotype and separated the recessive lethal mutation from the P-element by recombination. This yielded two fully viable and fertile recombinants bearing the P-element insertion, which Western and Northern blotting indicated is a severely hypomorphic allele of Gclm. Glutathione levels were approximately 2-fold lower in the GclmL0580 mutants than in control strains, demonstrating the importance of DmGCLM in the regulation of glutathione homeostasis in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号